• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2005, Vol. 27 ›› Issue (8): 73-75.

• 论文 • 上一篇    下一篇

解决非静态优化问题的MEAP算法

吴漫川 李元香 郑波尽   

  • 出版日期:2005-08-01 发布日期:2010-07-03

  • Online:2005-08-01 Published:2010-07-03

摘要:

演化算法已在传统的静态优化领域显示了惊人的能力,但非静态优化问题更接近于我们的生活。如何将演化算法应用于非静态优化是当前的一个研究热点。本文讨论了几种算  法,并提出了一种基于传统演化算法的新算法(MEAP)。这种新算法可以及时得知环境的改变并进行预处理,从而让种群有更多的机会产生优解。测试结果表明,该算法有优优良的性能。

关键词: 演化算法 非静态优化 MEAP 函数优化

Abstract:

Evolutionary algorithms have proved to be powerful in the static optimization field. But how to apply it to the non-static optimization problems that  are more common in the real world is still open. This paper discusses some algorithms that can get acceptable results, and proposes a new algorithm (ME EAP) that is based on classic EA. The new algorithm can learn about environmental changes instantaneously and offer preprocessing that can lead the pop pulation out of swamp and migrate to more hopeful areas if a change occurs, The experimental results show that this algorithm has better performance.

Key words: (evolutionary algorithm non-stationary optimization MEAP function optimization)