• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2006, Vol. 28 ›› Issue (11): 56-59.

• 论文 • 上一篇    下一篇

一种增强的κ-means聚类算法

蒋盛益[1,2] 李庆华[2]   

  • 出版日期:2006-11-01 发布日期:2010-05-20

  • Online:2006-11-01 Published:2010-05-20

摘要:

本文针对κ-modes算法在类的表示方面存在的不足,提出用摘要信息来表示一个类,并给出了一种适用于混合属性的距离定义,得到增强的κ-means算法——κ-summary算法  。理论分析和实验结果表明,κ-sumnlary算法较κ—modes算法和κ-prototypes算法具有更好的精度。

关键词: 数据挖掘 聚类算法 &kappa, -summary 算法

Abstract:

As for the shortcomings of the κ-modes algorithm in the representation of class, we present a method for the representation of class with summary information. A distance definition for mixed attributes is proposed in this paper. Based on the distance definition, we extend the κ-means algorithm and ppresent the κ-summary algorithm, Theoretical analyses and experimental results demonstrate that the κ-summary algorithm can create more accurate classs results than the κ- modes algorithm and the κ-prototypes algorithm

Key words: (data mining;clustering algorithm;κ-summary algorithm)