J4 ›› 2006, Vol. 28 ›› Issue (11): 63-65.
• 论文 • 上一篇 下一篇
曹忠升 张杨 李晨阳
出版日期:
发布日期:
Online:
Published:
摘要:
Hilbert曲线是多维结构降维的重要手段,在多维索引结构和图像处理等方面有着广泛的应用。传统的Hilbert编码是通过复制部分Hilbert曲线,运用旋转等操作完成整体结 构,时间复杂度为O(n^2)。通过对Hilbert曲线基本特征的研究,本文提出了一种新的基于分划的Hilbert编码方法,新算法的时间复杂度为O(nlogn),本文最后通过实例 对算法进行了分析。
关键词: 降维 Hilbert 分划 算法
Abstract:
The Hilbert curve is an important means in high-dimensional structural reduction, which is widely used in multi-dimensional index and image processing . The traditional coding algorithm is usually based on replicating part of the Hilbert curve, and using some operations like rotation to compose the total configuration, and it has a complexity of O(n^2 ). After investigating the essential characteristics of the Hilbert curve, this paper puts forward a new Hilbert coding algorithm with a complexity of O(nlogn) based on partitioning, and analyses the algorithm with practical instances.
Key words: (dimensional reduction, Hilbert, partitioning, algorithm)
曹忠升 张杨 李晨阳. 一种基于分划思想的Hilbert曲线快速编码算法[J]. J4, 2006, 28(11): 63-65.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2006/V28/I11/63