J4 ›› 2010, Vol. 32 ›› Issue (8): 90-93.doi: 10.3969/j.issn.1007130X.2010.
王〓博,贾〓焰,杨树强,韩伟红
WANG Bo,JIA Yan,YANG Shuqiang,HAN Weihong
摘要:
特征选择是数据挖掘和机器学习等领域内重要的预处理步骤,近年来得到了广泛的关注。文本数据的高维性往往会影响分类等数据挖掘任务的效率,因此特征选择常被作为文本分类过程中的重要组成部分,以达到降维的目的。随着分类技术的快速发展,类别的日益细化,文本的多类分类问题为特征选择方法提出了更多的挑战。本文面向文本多类分类的应用背景,阐述了目前特征选择方法所面临的主要挑战,给出了多分类特征选择方法的主要种类。本文沿着相关研究的发展路线,由易至难,由浅入深,通过对目前多分类特征选择算法的应用情况进行总结,并进行综述评论,最后对全文进行了概括,提出了未来可能的研究方向。
中图分类号: