• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (9): 57-60.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

求解VLSI布图规划问题的多目标粒子群优化算法

陈锦珠,郭文忠,陈国龙   

  1. (福州大学数学与计算机科学学院, 福建 福州 350108)
  • 收稿日期:2010-03-11 修回日期:2010-06-15 出版日期:2010-09-02 发布日期:2010-09-08
  • 作者简介:陈锦珠(1986),女,福建泉州人,研究生,研究方向为计算智能及其应用;郭文忠,博士,讲师,CCF会员(E200010092M),研究方向为计算智能和计算机网络等;陈国龙,博士,教授,CCF会员(E200007567S),研究方向为人工智能和网络信息安全等。
  • 基金资助:

    国家973计划资助项目(2006CB805904);国家自然科学基金资助项目(10871221);福建省科技创新平台计划资助项目(2009J1007)

A MultiObjective PSO for VLSI Floorplanning

CHEN Jinzhu,GUO Wenzhong,CHEN Guolong   

  1. (School of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)
  • Received:2010-03-11 Revised:2010-06-15 Online:2010-09-02 Published:2010-09-08

摘要:

布图规划在超大规模集成电路(VLSI)物理设计过程中具有重要作用,它是一个多目标组合优化问题且被证明是一个NP问题。为了有效解决布图规划问题,本文提出一个多目标粒子群优化(PSO)算法。该算法采用序列对表示法对粒子进行编码,根据遗传算法交叉算子的思想对粒子更新公式进行了修改;引入Pareto最优解的概念和精英保留策略,并设计了一个基于表现型共享的适应值函数以维护种群的多样性。仿真实验通过对MCNC标准问题的测试表明了本文算法是可行且有效的。

Abstract:

Floorplanning plays an important role in the physical design of very large scale integrated circuits(VLSI). It is a multiobjective combinatorial optimization and has been proved to be a NPhard problem. To solve this problem,a multiobjective particle swarm optimization (PSO) is proposed. The algorithm adopts sequence pair (SP) representation,thus the particle update formula is modified  by the principle of crossover operator in GA. The concept of ParetoOptimal Solution and elitism preserving strategy are imported. Moreover,a fitness function with phenotype sharing is designed to obtain a more uniformly distributed Pareto front. Experiments on the MCNC benchmarks show the proposed algorithm is feasible and effective.

Key words: floorplanning, multiobjective, particle swarm optimization, sequence pair