• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (11): 126-133.

• 论文 • 上一篇    下一篇

高分辨率遥感影像居民区检测算法研究

张宁新,陈忠,郭莉莉,谢庭   

  1. (华中科技大学自动化学院,湖北 武汉 430074)
  • 收稿日期:2013-08-14 修回日期:2013-10-14 出版日期:2013-11-25 发布日期:2013-11-25
  • 基金资助:

    国家自然科学基金青年基金资助项目(40801162);华中科技大学自主创新基金中央高校基本科研业务费资助项目(2013TS133);省部产学研结合项目专项资金(2011B090400420);宇航智能控制技术国家级重点实验室开放基金资助项目(20128646)

Study of settlement detection based on
high resolution remote sensing images  

ZHANG Ning-xin,CHEN Zhong,GUO Li-li,XIE Ting   

  1. (School of Automation,Huazhong University of Science and Technology,Wuhan 430074,China)
  • Received:2013-08-14 Revised:2013-10-14 Online:2013-11-25 Published:2013-11-25

摘要:

居民区信息提取对于国土规划和人类安全具有重要的研究意义和实用价值,目前提出的居民区检测算法存在将稀疏植被检测成居民区的情况,降低了检测精度。为实现高精度与高效率的遥感影像居民区检测,在基于旋转不变性纹理特征的遥感影像居民区检测算法基础上,采用形态学Top-Hat变换进行光谱增强,有效抑制了稀疏植被的干扰;同时,采用MPI与OpenMP相结合的异步通信模型实现了该算法的并行化,提高了算法运行效率。实验结果表明,该改进算法的并行化实现,不仅提高了算法的精度和鲁棒性,而且解决了处理大影像时算法速度过慢的问题。关键词:居民区检测;灰度共生矩阵;纹理;旋转不变性;Top-Hat变换;并行计算

Abstract:

The study on information extraction of settlements has important realistic significance for territorial planning and human security. Currently proposed settlements detection algorithms possibly detect sparse vegetation as settlements, thus degrading the detection accuracy. In order to obtain an efficient and high-accuracy detection method, the paper gives an improved model based on the analysis of the rotation-invariant texture of remote sensing images. Firstly, the morphological top-hat is applied to strengthen the spectrum and the interference of scattered vegetation is effectively suppressed. Secondly, by introducing an asynchronous communication model based on MPI (Message Passing Interface) and OpenMP, a parallel processing of the improved algorithm is realized successfully, which improves the efficiency of the algorithm. The experiment shows that this parallel algorithm improves detection accuracy and robustness, as well as solves the computational problem of large remote sensing images effectively.

Key words: settlement detection;gray-level co-occurrence matrix;texture;rotation-invariant;Top-Hat transformation;parallel computing