• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (01): 83-87.

• 论文 • 上一篇    下一篇

扩展D-S证据理论在入侵检测中的应用

陈烨1,2,刘渊1   

  1. (1.江南大学数字媒体学院,江苏 无锡 214122;2.江苏省信息融合软件工程技术研发中心,江苏 江阴 214405)
  • 收稿日期:2012-07-09 修回日期:2012-11-29 出版日期:2014-01-25 发布日期:2014-01-25
  • 基金资助:

    江苏省自然科学基金重点研究专项项目(BK2011003);国家自然科学基金资助项目(61103223);江苏省六大人才高峰基金资助项目

Application of extended D-S evidence theory in intrusion detection      

CHEN Ye1,2,LIU Yuan1   

  1. (1.School of Digital Media,Jiangnan University,Wuxi 214122;
    2.Jiangsu Engineering R&D Center for Information Fusion Software,Jiangyin 214405,China)
  • Received:2012-07-09 Revised:2012-11-29 Online:2014-01-25 Published:2014-01-25

摘要:

网络异常行为检测是入侵检测中不可或缺的部分,单一的检测方法很难获得较好的检测结果。针对经典D-S证据理论不能有效合成高度冲突证据的不足,提出将基于改进的加权D-S证据组合方法应用到网络异常行为检测中,并融合多个SVM,建立新的入侵检测模型。该方法通过引入平均证据得到权重系数,以此区分各证据在D-S融合中的影响程度,因此能有效解决证据的高度冲突。仿真结果表明,与传统的基于D-S证据理论的异常检测相比,本模型能够有效提高融合效率,进而提高检测性能。

关键词: 异常检测, SVM, DS证据理论, 融合

Abstract:

Network anomaly behavior detection is the important section of the intrusion detection, and it is hard for single security measure to attain good detection result. According to the evidence combination problem of highly conflict evidences, the paper applies an improved combination method based on weight to network anomaly behavior detection, and builds an intrusion detection model with multiple SVM classifiers. The method uses average evidences and weight value to distinguish the importance among all evidences, and thus it can deal with the conflicting evidences. Simulation results show that, compared with the traditional DS theory, the proposed model can effectively improve the integration efficiency, thereby improving detection performance.

Key words: anomaly intrusion;SVM;DS evidence theory;fusion