• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (08): 1423-1429.

• 论文 •    下一篇

计算密集型与数据密集型混合网格作业调度算法

郝永生1,卢俊文2,刘冠峰3,温娜4   

  1. (1.南京信息工程大学网络信息中心,江苏 南京 210044;2.厦门理工大学,福建 厦门 361024;
    3.苏州大学先进数据分析研究中心,江苏 苏州 215006;4.南京信息工程大学大气科学学院,江苏 南京 210044)
  • 收稿日期:2013-03-20 修回日期:2013-05-20 出版日期:2014-08-25 发布日期:2014-08-25
  • 基金资助:

    福建省教育厅科技项目B类(JB09199);国家自然科学基金资助项目(41005048);科技部资助项目(GYHY201106037,GYHY200906023)

Three grid job scheduling methods heuristics
for data-intensive and computing-intensive jobs            

HAO Yongsheng 1,LU Junwen2,LIU Guanfeng3,WEN Na4   

  1. (1.Network Center,Nanjing University of Information Science & Technology,Nanjing 210044;2.Xiamen University of Technology,Xiamen 361024;
    3.Soochow Advanced Data Analytics Lab,Soochow University,Suzhou 215006;
    4.College of Atmospherics Science,Nanjing University of Information Science & Technology,Nanjing 210044,China)
  • Received:2013-03-20 Revised:2013-05-20 Online:2014-08-25 Published:2014-08-25

摘要:

针对计算密集型作业与数据密集型作业混合情况,在一个作业有时间限制的动态环境中,对传统的网格作业调度方法进行扩展,提出了三种网格作业调度启发式算法:Eminmin、Ebest、Esufferage。并在一个由多个Cluster组成的、通过高速网络连接的网格模型上,对三种算法进行验证。与Minmin算法的比较结果显示:三种算法均优于Minmin算法。与ASJS算法比较结果显示:Eminmin减少了等待时间与作业的makespan; Esufferage算法以减少作业完成量为代价,减少了作业的等待时间及makespan; Ebest在完成作业数量上与ASJS基本保持一致,但却增加了作业的等待时间与makespan。总体上,Eminmin具有比较大的优势。

关键词: 计算密集;数据密集;作业调度;平均执行时间

Abstract:

Most of the existing grid job scheduling methods focus on either dataintensive jobs or computingintensive jobs.In the dynamic environment where every job has its deadline,we extend the traditional grid job scheduling methods to propose three new grid job scheduling methods:Eminmin,Ebest and Esufferage.The three methods are validated on the Grid model with clusters that are connected by the high speed network.Simulation results demonstrate that our proposed methods are better than Minmin.The comparison between the three methods and ASJS shows that,Eminmin reduces the waiting time and makespan,Esufferage reduces the waiting time and the makespan greatly with the sacrifice of some jobs,and Ebest gives the same performance in unfinished jobs but has a larger value in waiting time and makespan than ASJS. In general,Eminmin has a better performance than Minmin and ASJS.

Key words: computing-intensive;data-intensive;job scheduling;average makespan