• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (02): 390-396.

• 论文 • 上一篇    下一篇

基于四叉树分解与图割的彩色图像快速分割

胡志立,郭敏   

  1. (1.现代教育技术教育部重点实验室,陕西 西安 710062;2.陕西师范大学计算机科学学院,陕西 西安 710062)
  • 收稿日期:2013-05-29 修回日期:2013-10-13 出版日期:2015-02-25 发布日期:2015-02-25
  • 基金资助:

    国家自然科学基金资助项目(10974130);陕西省青年科技新星资助项目(2011kjxx17);中央高校基本科研业务专项基金资助项目(GK201405007);陕西省重点科技创新团队项目(2014KTC18);陕西师范大学学习科学交叉学科培育计划资助

Fast segmentation in color image
based on quadtree decomposition and graph cuts 

HU Zhili,GUO Min   

  1. (1.Key Laboratory of Modern Teaching Technology,Ministry of Education,Xi’an 710062;
    2.School of Computer Science,Shaanxi Normal University,Xi’an 710062,China)
  • Received:2013-05-29 Revised:2013-10-13 Online:2015-02-25 Published:2015-02-25

摘要:

图割是一种基于图论的组合优化方法,基于图割的GrabCut是一种高效的前景提取算法。然而,GrabCut为达到一定分割精度,在高斯混合模型参数估计过程中多次迭代使用图割,这使得GrabCut在处理海量级图像数据时,耗时往往比较大。通过四叉树分解,可以将图像划分成区域内相似度高的若干分块,以构建精简的网络图,并用块内的RGB均值代替该块内的所有像素点的值进行高斯混合模型参数估计,从而减小问题规模,提高算法效率。实验结果表明了算法的可行性及有效性。关键词:

关键词: 图割, 四叉树分解, 高斯混合模型

Abstract:

Graph cuts is a combinatorial optimization method based on graph theory,and GrabCut based on it is an efficient foreground extraction algorithm.To achieve a certain segmentation accuracy,multiple iterations using graph cuts during the course of parameter estimation in the Gaussian Mixture Model(GMM),make it consume massive time when processing a great deal of image data.In this paper,we use quadtree decomposition to divide the image into several subblocks with internal high similarity and thus construct a compact weighted graph;the Gaussian Mixture Model (GMM) parameters can be estimated by the mean RGB values instead of all pixel values within blocks,so it can reduce the problem scale and significantly improve the efficiency of the algorithm.The experimental results demonstrate the feasibility and effectiveness of the algorithm.

Key words: graph cuts;quadtree decomposition;Gaussian mixture model