• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (07): 1355-1359.

• 论文 • 上一篇    下一篇

基于Gabor和改进LDA的人耳识别

胡春安,陈玉玲   

  1. (江西理工大学信息工程学院,江西 赣州 341000)
  • 收稿日期:2014-10-13 修回日期:2014-11-26 出版日期:2015-07-25 发布日期:2015-07-25
  • 基金资助:

    江西省教育厅科技项目(GJJ14430);江西省教育厅重点项目(赣教技字[12770]号)

An ear recognition algorithm based on
Gabor features and improved LDA   

HU Chunan,CHEN  Yuling   

  1. (School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
  • Received:2014-10-13 Revised:2014-11-26 Online:2015-07-25 Published:2015-07-25

摘要:

针对人耳识别中无法避免的小样本问题,提出了基于Gabor特征和改进LDA(ILDA)的识别算法。该算法首先提取人耳局部Gabor特征,然后重新定义Fisher准则和类内分散度矩阵,再将高维空间映射到低维后寻找最优投影方向,最后利用训练样本与测试样本特征投影值的欧氏距离进行分类识别。与传统方法相比,新算法能有效解决人耳识别中的小样本问题,获得较高的识别准确率。

关键词: 局部Gabor特征, 改进LDA算法, 欧氏距离, 小样本问题, 人耳识别

Abstract:

We propose a novel ear recognition algorithm based on Gabor features and improved LDA to deal with the inevitable problem of small sample size.We firstly extract ear features by the local Gabor filter,and redefine the new Fisher criteria and the intra class scatter matrix.Then we seek the optimal projection direction by mapping from a higherdimensional space to a lowerdimensional space,Finally we make a comparison of the Euclidean distance of projecting feature vectors  between the training samples and the testing samples,and classify them accordingly. Experimental results show that, compared with the traditional methods, the proposed algorithm can effectively solve the small sample size problem in ear recognition with a higher recognition accuracy.

Key words: local gabor feature;improved LDA;euclidean distance;small sample size problem;ear recognition