• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (07): 1366-1371.

• 论文 • 上一篇    下一篇

基于Android的水稻病害图像识别系统设计与应用

郑姣,刘立波   

  1. (宁夏大学数学计算机学院,宁夏 银川 750021)
  • 收稿日期:2014-10-28 修回日期:2015-03-02 出版日期:2015-07-25 发布日期:2015-07-25
  • 基金资助:

    2012年度中科院西部之火人才计划;2013年度宁夏科技支撑计划;国家自然科学基金资助项目(61363054)

Design and application of rice disease
image recognition system based on Android  

ZHENG Jiao,LIU Libo   

  1. (School of Mathematics and Computer,Ningxia University,Yinchuan 750021,China)
  • Received:2014-10-28 Revised:2015-03-02 Online:2015-07-25 Published:2015-07-25

摘要:

针对目前水稻病害图像识别系统依赖于数码相机和计算机,缺乏便携性和实时性的问题,设计了一款基于Android手机的水稻病害图像识别系统。系统通过分析水稻稻瘟病、胡麻斑病、干尖线虫病、白叶枯病四种病害的颜色、形状、纹理特征,采用图像预处理、图像增强、图像分割、特征提取以及图像识别的处理方法,实现基于图像识别的及时准确诊断水稻病害类型的目的。实验结果表明,系统准确率可达93.78%,正检率96.22%,误检率6.22%,虚警率1.56%,平均诊断用时2.802 s。该系统能有效地拍摄并诊断水稻病害,迅速、准确地给出病害防治措施。

关键词: 安卓手机, 水稻病害, 诊断, 图像识别

Abstract:

Currently,most of the rice disease image recognition systems rely on digital cameras and computers,which lack of portability and realtime features.To diagnosis rice diseases in the fields timely,we design a rice disease image recognition system based on Android mobile phones.We analyze the color,shape,and texture features of the following four types of diseases:rice blast, flax spot disease,dry pointed nematode,and white leaves dry disease.We use multiple methods such as image pretreatment,image segmentation,feature extraction and image recognition.Experimental results show that the accuracy rate is 93.7%,the detection rate is 96.22%,the false detection rate is 6.22%,the false alarm rate is 1.56%,and the average diagnosis time is 2.802 s.The proposed system can effectively capture and diagnose the types of rice disease rapidly and accurately,and it can also provide some disease control measures.

Key words: Android mobile phone;rice disease;diagnosis;image recognition