J4 ›› 2015, Vol. 37 ›› Issue (10): 1965-1970.
孙可1,3,龚永红1,2,邓振云1,3
SUN Ke1,3,GONG Yonghong1,2,DENG Zhenyun1,3
摘要:
传统的K近邻(KNN)分类算法在实际应用过程中存在一些缺陷:没有考虑去除噪声样本,也没有考虑到在样本数据空间变换过程中保持样本数据本身的流形学结构,并且没有使用样本间属性的相关性。为此,提出引入稀疏学习理论,利用训练样本重构测试样本的方法,重构过程使用了样本间的相关性,也用到局部保持投影LPP保持数据结构不变,同时引入l2,1范数用于去除噪声样本的方法来寻找投影变换矩阵W,进而利用W确定KNN算法中K值的SA-KNN算法。在UCI数据集上的仿真实验结果表明,该方法比传统的KNN分类算法和EntropyKNN算法有更高的分类准确度。