计算机工程与科学
• 论文 • 上一篇 下一篇
马子骥,郭帅锋,刘宏立,李艳福,倪忠
收稿日期:
修回日期:
出版日期:
发布日期:
基金资助:
中央国有资本经营预算项目(财企[2013]470号);中央高校基本科研项目(2014-004);国家自然科学基金(61172089);湖南省科技计划项目(2014WK3001);中国博士后科研基金(2014M562100);湖南省科技计划重点项目(2015JC3053)
MA Zi-ji,GUO Shuai-feng,LIU Hong-li,LI Yan-fu,NI Zhong
Received:
Revised:
Online:
Published:
摘要:
为了提高EEMD分解中噪声主导模态的去噪效果,利用模糊隶属度的优势,提出了一种EEMD和模糊阈值相结合的去噪方法。首先用二范数计算各个本征模态函数(IMF)与观测信号的概率密度函数(PDF)之间的相似度,得到噪声主导的IMF;然后对噪声主导的IMF进行模糊阈值处理,以去除IMF中的噪声;最后将所有的IMF重构得到消噪信号。分别采用仿真信号和ECG信号进行去噪实验,结果均表明,所提方法的去噪效果整体上优于小波半软阈值方法和基于EMD的间隔阈值(EMD-IT)方法。
关键词: 聚合经验模态分解, 本征模态函数, 模糊隶属度, 噪声主导模态, 信号去噪
Abstract:
In order to improve the denoising effect of the noise dominant mode in EEMD decomposition, we propose a novel denoising method combining the EEMD and fuzzy threshold by using fuzzy membership degree. Firstly, the similarity between the intrinsic density function (IMF) and the probability density function (PDF) of the observed signals is calculated using the two norms, and the noise-dominated IMF is obtained. Then, the noise-dominated IMF is subjected to fuzzy threshold processing and hence the noise is removed from the IMF. Finally, all of the remained IMFs are reconstructed to get noise suppression signals. Simulation experiments are conducted by using both suppositional and ECG signals. The results show that the denoising effect of the proposed method is better than that of the wavelet half-soft threshold method and the EMD-based interval threshold (EMD-IT) method.
Key words: ensemble empirical mode decomposition, intrinsic mode function, fuzzy membership degree, noise dominant mode, signal denoising
马子骥,郭帅锋,刘宏立,李艳福,倪忠. 基于EEMD和模糊阈值的去噪方法[J]. 计算机工程与科学.
MA Zi-ji,GUO Shuai-feng,LIU Hong-li,LI Yan-fu,NI Zhong. EEMD and fuzzy threshold based noise suppression[J]. Computer Engineering & Science.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2017/V39/I04/763