• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

流式时间序列的实时相似度研究

屈振新,王宏宇   

  1. (中南财经政法大学信息与安全工程学院,湖北 武汉 430073)
  • 收稿日期:2015-12-01 修回日期:2016-03-29 出版日期:2017-06-25 发布日期:2017-06-25
  • 基金资助:

    国家自然科学基金(71373286)

Real time similarity of streaming time sequence

QU Zhen-xin,WANG Hong-yu   

  1. (School of Information and Safety Engineering,Zhongnan University of Economics and Law,Wuhan 430073,China)
  • Received:2015-12-01 Revised:2016-03-29 Online:2017-06-25 Published:2017-06-25

摘要:

动态时间弯曲算法虽然适合度量时间序列的相似度,但是在大数据背景下,对于序列个数多、潜在长度可能是无穷、实时性要求高的流式时间序列,面临着算法简单、计算不简单的可计算问题。以Spark计算平台为基础,针对流式时间序列的特点,提出了一种流式动态时间弯曲算法,能实时计算动态时间序列近似值,误差可控、稳定,且具备大数据计算能力。最后通过实验验证了算法的可行性和稳定性。

关键词: 流, 时间序列, 相似性, 实时, 大数据

Abstract:

Although the dynamic time warping algorithm is suitable for measuring time sequence similarity, streaming time sequence has a large quantity of sequences, potential infinite length, and requirement for high real-time performance in the big data background, thus facing problems of simple algorithm and complex computation. We propose a new streaming dynamic time sequence algorithm according to the features of streaming time sequence based on the Spark calculation platform, which can calculate the approximate value of dynamic time sequence in real-time, and has controllable error, good stability, and ability of processing big data. Experimental results verify its feasibility and stability.

Key words: stream, time sequence, similarity, real time, big data