• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种基于航电系统架构模型的故障树自动建模方法

徐文华,张育平   

  1. (南京航空航天大学计算机科学与技术学院,江苏 南京 211106)
     
  • 收稿日期:2016-06-28 修回日期:2016-10-25 出版日期:2017-12-25 发布日期:2017-12-25
  • 基金资助:

    国家973计划(2014CB744901,2014CB744903,2014CB744904,2014CB744905)

A fault tree auto-modeling method based on
avionics system architecture model
#br#  

XU Wen-hua,ZHANG Yu-ping   

  1. (School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
  • Received:2016-06-28 Revised:2016-10-25 Online:2017-12-25 Published:2017-12-25

摘要:

航电系统作为安全关键系统,利用故障树对其进行安全性分析十分必要。然而,传统的故障树依靠手工构建,主要依赖于分析人员对系统的理解程度;同时由于安全性分析人员与系统设计人员对系统的理解不同而很难保证失效模式与系统架构的一致性。针对上述问题,提出了一种基于航电系统架构模型的故障树自动建模方法:通过向系统设计模型中添加相应的安全性属性,并嵌入高级形式化语言AltaRica中的断言机制描述故障转移过程,由此形成安全性分析模型;基于此模型利用路径追溯的方法完成故障树自动建模。以某飞机驾驶舱显示系统为案例的研究结果表明,所提出的方法能基于航电系统架构模型有效进行故障树自动建模,从而确保了故障树分析结果的完整性。

关键词: 航电系统架构, 系统建模语言(SysML), 故障树建模, AltaRica, 卫式转换系统

Abstract:

It is very necessary to conduct safety analysis on the safety critical avionics system by fault tree. However, fault tree is traditionally modeled in a manual way, which mainly relies on how well the analyzers understand the system. Meanwhile, the consistency between failure modes and system architectures is hard to be guaranteed due to the differences  in the understanding between the safety analyzers of the system and the system designers. Aiming at the above problems, we propose a fault tree auto-modeling method based on avionics system architecture model. The safety analysis model is constructed through adding safety properties to the system design model and embedding assertion mechanism of the advanced formal language AltaRica to describe the fault transition process. The fault tree auto-modeling is then conducted by tracing the data signal path of the model. The results of the case study on one cockpit display system indicate that the proposed method is able to conduct fault tree auto-modeling efficiently based on the avionics system architecture model, ensuring the completeness of the fault tree analysis results.

Key words: avionics system architecture, SysML, fault tree modeling, AltaRica, guarded transitions system