摘要:
书法笔画具有丰富的书写人特征,能否正确进行特征向量提取和匹配直接影响识别效果。针对SURF算法检测特征点少、误匹配率高的问题,提出了一种基于Contourlet变换的SURF算法。该算法利用Contourlet变换,在提取特征点前对书法字笔画进行子带分解(LP)和方向性滤波(DFB),得到低频和高频细节分量,采用最小欧氏距离准则(LEDC)对低频细节分量进行相似性计算,高频细节分量进一步分解后选取合适阈值提取高频特征点,然后进行SURF特征点匹配,采用RANSAC算法剔除误匹配点。实验表明,改进的SURF算法不仅能更好地提取笔画特征点,提高抗噪性能,识别率也提高了3%。
王民,庞爽爽,周军妮. 改进的SURF算法在书法笔画匹配识别中的应用[J]. 计算机工程与科学.
WANG Min,PANG Shuang-shuang,ZHOU Jun-ni.
An improved SURF algorithm for
calligraphy strokes recognition
[J]. Computer Engineering & Science.