• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于突触离子通道动力学神经元网络的高效并行仿真算法

彭霞,王直杰,韩芳,顾晓春   

  1. (东华大学信息科学与技术学院,上海 201620)
  • 收稿日期:2017-09-07 修回日期:2017-11-15 出版日期:2018-04-25 发布日期:2018-04-25
  • 基金资助:

    国家自然科学基金(11572084,11472061)

A high-efficient parallel neuronal network simulation
algorithm based on synaptic ion channel kinetic

PENG Xia,WANG Zhijie,HAN Fang,GU Xiaochun   

  1. (College of Information Science and Technology,Donghua University,Shanghai 201620,China)
  • Received:2017-09-07 Revised:2017-11-15 Online:2018-04-25 Published:2018-04-25

摘要:

在计算神经科学领域,大规模神经元网络的并行仿真对探索和揭示生物大脑中信息传递机制有着重要作用。为加速大规模神经元网络仿真,提出一种模块独立性强、耦合度低的基于突触递质受体离子通道动力学的神经元网络的并行算法。通过分析化学突触信息传递机理及递质分子、受体离子通道动力学特征,提出了递质受体计算分离的思想,增强了突触前神经元引起的递质分子浓度计算与突触后绑定状态的受体浓度计算之间的独立性,降低突触电流计算中突触前神经元状态和突触后神经元状态之间的耦合度。基于上述思想,设计并实现了一种生物神经网络并行算法。仿真结果表明了该算法的高效性。
 
 

关键词: 神经元网络, 递质受体, 离子通道, 突触电流, 耦合度

Abstract:

In the field of computational neuroscience, the parallel simulation of largescale neuronal networks plays a very important role in exploring and revealing the information processing mechanism of the brain. In order to accelerate the largescale neuronal network simulation,an efficient parallel neuronal network algorithm based on synaptic neurotransmitterreceptor ion channel kinetic characteristics is proposed. By analyzing the information transmission mechanisms and the neurotransmitterreceptor ion channel kinetic characteristics of the chemical synapse, we propose an idea of the separation of presynaptic neurotransmitter computing from postsynaptic receptor computing. The new idea enhances the independence of the two concentration calculation: neurotransmitter emitted by presynaptic neurons, and the bound postsynaptic receptors.During each synaptic current computing, the new idea reduces the coupling degree of the presynaptic neuron and the postsynaptic neuron.Based on the new idea, we design a parallel algorithm for parallel neuronal network simulation based on synaptic ion channel kinetic.Simulation results show that the algorithm is efficient.
 

Key words: neuronal network, neurotransmitterreceptor, ion channel, synaptic current, coupling degree