• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于改进KCF的跟踪注册方法

雍玖1,2,王阳萍1,2,雷晓妹3   

  1. (1.兰州交通大学计算机科学与技术实验教学示范中心,甘肃 兰州 730070;
    2.兰州交通大学电子与信息工程学院,甘肃 兰州 730070;
    3.甘肃省气象局气象信息与技术装备保障中心,甘肃 兰州 730020)
  • 收稿日期:2016-06-07 修回日期:2016-09-10 出版日期:2018-04-25 发布日期:2018-04-25
  • 基金资助:

    国家自然科学基金(61162016,61562057);甘肃省国际科技合作项目(144WCGA162);兰州市人才创新创业科技计划项目(2014RC7)

A tracking and registration method based on improved KCF

YONG Jiu1,2,WANG Yangping1,2,LEI Xiaomei3   

  1. (1.Computer Science and Technology Experimental Teaching Demonstration Center,Lanzhou Jiaotong University,Lanzhou 730070;
    2.School of Electronic & Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070;
    3.Meteorological Information and Technological Supporting Center,Gansu Meteorological Service,Lanzhou 730020,China)
  • Received:2016-06-07 Revised:2016-09-10 Online:2018-04-25 Published:2018-04-25

摘要:

针对三维注册易受环境以及目标跟踪检测算法耗时严重、精度低的影响,提出改进KCF(IKCF)的跟踪注册方法。该方法分为4步:(1)利用正则最小二乘分类器的样本训练来获取尺度核相关滤波器和位置信息;(2)搜索尺度核相关滤波器和位置输出响应最大值,完成尺度和目标位置的检测;(3)借鉴MOSSE跟踪器更新方法对模型更新;(4)采用ORB算法对目标位置特征检测并计算出注册矩阵。选取视觉跟踪基准数据集中的6组数据以及拍摄的视频序列仿真实验。仿真结果表明,当目标位置发生旋转、缩放、部分遮挡、光照和运动模糊时,IKCF在精确度、成功率以及效率上总体优于KCF、TLD、Struck和CT算法;且目标位置与OpenGL立方体注册融合度较高;基于IKCF的AR系统具有较好的实时性、稳定性和鲁棒性。

关键词: KCF跟踪, IKCF算法, ORB算法, 三维注册, 增强现实

Abstract:

Since 3D registration is easily affected by the environment and target tracking and detection algorithms are timeconsuming with low precision, we propose a tracking and registration method based on an improved kernerlized correlation filter (IKCF). The method includes four steps: (1) utilizing the regularized least squares classifier for sample training to obtain kernel correlation filter and position information; (2) searching scale kernel correlation filter and the maximum of position output to achieve the detection of the scale and position; (3) updating the model by referring to the MOSSE tracker; (4) adopting the oriented FAST and rotated BRIEF (ORB) to do feature extraction and matching, and then calculate the registration matrix. We utilize 6 sets of data in the Visual Tracker Benchmark datasets and video sequence to simulate. The results show that the IKCF generally outperforms the KCF, trackinglearningdetection (TLD), structured output tracking with kernel (Struck) and compressive tracking (CT) in precision, success rate and efficiency when rotation, scale variation, partial occlusion, illumination or motion blur occurs. Besides, the target position is highly aligned with OpenGL cube registration, and the augmented reality (AR) system based on IKCF is more realtime, stable and robust.

Key words: kernerlized correlation filter(KCF) tracking, IKCF algorithm, ORB algorithm, 3D registration, augmented reality