• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

基于主成分分析和对数几率回归的硬件木马检测

张金玲1,吕蕾2   

  1. (1.中国人民大学信息学院,北京 100872;
    2.山东师范大学信息科学与工程学院,山东 济南 250014)
  • 收稿日期:2018-04-10 修回日期:2018-05-28 出版日期:2018-07-25 发布日期:2018-07-25
  • 基金资助:

    国家自然科学基金(61502505)

Hardware Trojan detection based on
PCA and logistics regression
 

ZHANG Jinling1,L Lei2   

  1. (1.School of Information,Renmin University of China,Beijing 100872;
    2.School of Information Sciences and Engineering,Shandong Normal University,Jinan 250014,China)
     
  • Received:2018-04-10 Revised:2018-05-28 Online:2018-07-25 Published:2018-07-25

摘要:

提出基于主成分分析和对数几率回归的硬件木马检测模型,以提高对硬件木马芯片的检测性能。对采集的旁路功耗信号进行主成分分析组合并选择主要特征,屏蔽信号噪声影响,简化计算操作。利用对数几率回归算法训练分类器,通过计算芯片包含和不包含木马可能性对数比率进行硬件木马识别。设计并搭建FPGA实验平台进行模型验证,通过查准率和查全率评估模型性能。实验结果表明,此模型能够准确高效地检测出硬件木马。
 

关键词: 硬件木马, 旁路信号, 主成分分析, 对数几率回归

Abstract:

We propose a hardware Trojan detection model based on the PCA and logistics regression to promote the detection performance of the IC planted with hardware Trojan. We employ the PCA to analyze the collected side channel power signals and select main features, remove the effect of noise, and simplify the computation. The logistics regression algorithm is adopted to train the classifier. We detect hardware Trojan by calculating the logarithmic ratio between the probability that includes Trojan and the probability that does not include Trojan. An FPGA experiment platform is designed and established to validate the proposed model. Two indicators (precision and recall) are used to evaluate the model’s performance. Experimental results show that this model can detect hardware Trojan effectively.
 

Key words: hardware Trojan, side channel signal, PCA, logistics regression