摘要:
谱聚类算法中如何定义一个合适的尺度参数仍待学习。针对谱聚类算法中由高斯核函数建立的相似度矩阵对尺度参数敏感的问题,提出了一个新的基于加权密度的自适应谱聚类算法——WDSC。该算法将数据点的加权K近邻距离作为尺度参数,尺度参数的倒数作为数据点所在邻域的密度,引入新的密度差调整相似度矩阵;考虑了每个数据点的邻域分布,故对噪声有一定的鲁棒性,且对参数也不再敏感。在不同数据集上的实验以及对比实验均验证了该算法的有效性与鲁棒性。
万月,陈秀宏,何佳佳. 基于加权密度的自适应谱聚类算法[J]. 计算机工程与科学.
WAN Yue,CHEN Xiuhong,HE Jiajia.
An adaptive spectral clustering algorithm
based on weighted density
[J]. Computer Engineering & Science.