• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 计算机网络与信息安全 • 上一篇    下一篇

基于贴近度等级的链路质量评估方法

张和杰,马维华   

  1. (南京航空航天大学计算机科学与技术学院,江苏 南京 211106)
  • 收稿日期:2017-08-28 修回日期:2017-11-09 出版日期:2018-11-25 发布日期:2018-11-25
  • 基金资助:

    南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20171609);中央高校基本业务费专项资金

A link quality estimation method
based on closeness grades

ZHANG Hejie,MA Weihua   

  1. (School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
     
  • Received:2017-08-28 Revised:2017-11-09 Online:2018-11-25 Published:2018-11-25

摘要:

无线传感器网络中,链路具有波动性,为提高数据传输的准确率,可以通过链路质量评估避开差的链路。在目前的链路质量评估研究中,针对链路等级划分存在主观性和无统一性的问题,利用熵值法计算评估参数权重,消除主观因素在参数权重计算中的干扰。由于链路质量受多特征属性影响,采用贴近度分析法综合各种特征属性划分链路质量等级。在此基础上,提出一种基于贴近度等级的链路质量评估方法,采用类间离散度二叉决策树进行链路分类,建立了链路质量4级二叉树的支持向量机SVM评估模型。同时提出一种混合优化算法对核函数的参数寻优。实验结果表明,改进的参数寻优方法有效提高了模型评估的准确性,训练时间短;在多网络环境下,与基于LQI的链路质量评估模型和BP神经网络评估模型相比,该模型以较少的探测包更为准确地评估出链路质量,避免因发送大量探测包带来的能量开销,降低了能耗,具有很好的环境适应能力。

关键词: 无线传感器网络, 链路质量评估, 支持向量机, 贴近度分析法

Abstract:

In wireless sensor networks (WSNs), volatility of the link affects the accuracy of data transmission of the upper routing protocols. To improve the efficiency, link quality evaluation is used to avoid choosing poor links and increase the efficiency of routes. Link hierarchy grading in current link quality estimation study is subjective without unity. Aiming at this problem, we use the entropy method to calculate the weight of evaluation parameters to eliminate the interference of subjective factors in the calculation. Since the link quality is affected by multiple feature attributes, we then determine link quality grades by the closeness analysis method. According to the grades, we propose a link quality evaluation method based on closeness grades, which uses the dispersion degree of classes to establish a binary decision tree for classifying link quality. We also build a four level binary decision tree estimation model of link quality based on the support vector machine (SVM). Besides, we utilize a hybrid algorithm to optimize the parameters of the kernel function. Experimental results indicate that the improved algorithm can increase estimation accuracy  with less training time. Comparison in multinetwork scenarios shows that the proposed model outperforms the conventional link quality estimation model based on LQI and the estimation model based on BP neural network. It can accurately assess current link quality with a small number of probe packets, thus reducing energy consumption with good adaptive capacity to the environment.

Key words: wireless sensor network, link quality estimation, support vector machine, closeness analysis method