• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于聚类标签均值的半监督支持向量机

田勋,汪西莉   

  1. (陕西师范大学计算机科学学院,陕西 西安 710062)
  • 收稿日期:2016-09-05 修回日期:2018-04-24 出版日期:2018-12-25 发布日期:2018-12-25
  • 基金资助:

    国家自然科学基金(41171338,41471280)

Semi-supervised support vector machine
based on clustering label mean

TIAN Xun,WANG Xili   

  1. (School of Computer Science,Shaanxi Normal University,Xi’an 710062,China)
  • Received:2016-09-05 Revised:2018-04-24 Online:2018-12-25 Published:2018-12-25

摘要:

针对标签均值半监督支持向量机在图像分类中随机选取无标记样本会导致分类正确率不高,以及算法的稳定性较低的问题,提出了基于聚类标签均值的半监督支持向量机算法。该算法修改了原算法对于无标记样本的惩罚项,对选取的无标记样本聚类,使用聚类标签均值替换标签均值。实验结果表明,使用聚类标签均值训练的分类器大大减少了背景与目标的错分情况,提高了分类的正确率以及算法的稳定性,适合用于图像分类。

关键词: 半监督支持向量机, 标签均值, 聚类标签均值, 图像分类

Abstract:

Semi-supervised support vector machine (S3VM) based on label mean can lead to low classification accuracy and unstable results due to random selection of unlabeled samples. In order to deal with the problems, we propose a semisupervised support vector machine based on clustering label mean. This method modifies the penalty terms of the original algorithm for unlabeled samples, clusters unlabeled samples and replaces label mean with clustering label mean. Experimental results indicate that the proposed method greatly reduces the misclassification of background and objectives, improves the stability and classification accuracy of the algorithm, and it is suitable for image classification.
 

Key words: semi-supervised support vector machine (S3VM), label mean, clustering label mean, image classification