• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于KCF相似度的TLD目标跟踪算法

张晶1,2,熊晓雨1,鲍益波3   

  1. (1.昆明理工大学信息工程与自动化学院,云南 昆明 650500;
    2.云南枭润科技服务有限公司,云南 昆明 650500;3.云南省科学技术发展研究院,云南 昆明 650051)
     
  • 收稿日期:2018-05-07 修回日期:2018-07-12 出版日期:2019-02-25 发布日期:2019-02-25
  • 基金资助:

    国家自然科学基金(61562051)

A TLD object tracking algorithm based on KCF similarity

ZHANG Jing1,2,XIONG Xiaoyu1,BAO Yibo3   

  1. (1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;
    2.Yunnan Xiaorun Technology Service Co.,Ltd.,Kunming 650500;
    3.Yunnan Academy of Science and Technology Development,Kunming 650051,China)
  • Received:2018-05-07 Revised:2018-07-12 Online:2019-02-25 Published:2019-02-25

摘要:

研究持续单目标跟踪算法时,TLD的架构是一种值得借鉴的方式,但由于其本身的一些缺陷,当跟踪的目标在出现遮挡、快速移动以及光照变化等复杂情况下,TLD跟踪算法容易发生目标跟丢的情况,并造成误差的逐渐累积。鉴于TLD跟踪算法以中值流跟踪算法作为跟踪器存在局限性,本文提出一种基于KCF相似度的TLD目标跟踪算法(TLDKCFS)。采用KCF算法对TLD跟踪进行实时监督,通过跟踪结果计算出相似度,利用相似度进行检测模块切换的判断,并结合两种结果调整目标跟踪框。通过对多类型的视频序列进行测试后可知,TLDKCFS算法在遇到模糊和快速移动、目标遮挡、光照变化等复杂情况时,可以稳定且良好地输出跟踪结果,鲁棒性较好,适用于长时间目标跟踪。
 
 

关键词: 跟踪框相似度, 可信跟踪点, 跟踪框调整

Abstract:

The architecture of the trackinglearningdetection (TLD) algorithm is a good reference  for studying longtime single object tracking algorithms. However, due to some defects of its own, the TLD algorithm tends to cause the accumulation of errors and the occurrence of losing objects in complex situations such as fast moving, occlusion and light changes. Given the limitation of the median flow algorithm as the tracker in the tracking module of the TLD algorithm, we propose a TLD object tracking algorithm based on KCF similarity (TLD-KCFS). The KCF algorithm is used to monitor the TLD tracking in real time. The similarity is calculated via the tracking results to judge the switching of the detection module, and the bounding box is adjusted by the combination of the two results. Tests on several different types of videos show that the TLD-KCFS algorithm can achieve stable and good tracking output in complex situations such as blur, fast moving, occlusion, and light changes. It is robust and suitable for longtime object tracking.
 

Key words: bounding box similarity, trusted tracking point, bounding box adjustment