• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

面向服务的云-端动态协作方法

曹云梦1,2,周胜军3,刘晨1,2,韩燕波1,2   

  1. (1.北方工业大学大规模流数据集成与分析技术北京市重点实验室,北京 100144;
    2.北方工业大学数据工程研究院,北京 100144;3.全球互联网研究院有限公司,北京 100000)
  • 收稿日期:2018-11-10 修回日期:2019-01-05 出版日期:2019-04-25 发布日期:2019-04-25
  • 基金资助:

    国家自然科学基金(61672042)

A service-oriented dynamic collaboration
 method between cloud and edge

CAO Yunmeng1,2,ZHOU Shengjun3,LIU Chen1,2,HAN Yanbo1,2   

  1. (1.Beijing Key Laboratory on Integration and Analysis of LargeScale Stream Data,
    North China University of Technology,Beijing 100144;
    2.Data Engineering Research Institute,North China University of Technology,Beijing 100144;
    3.Global Energy Internet Research Institute Ltd,Beijing 100000,China)
  • Received:2018-11-10 Revised:2019-01-05 Online:2019-04-25 Published:2019-04-25

摘要:

边缘计算可以通过将计算转移至边缘设备,以提高大型物联网流数据的处理质量并降低网络运行成本。然而,实现大型流数据云计算和边缘计算的集成面临两个挑战。首先,边缘设备的计算能力和存储能力有限,不能支持大规模流数据的实时处理。其次,流数据的不可预测性导致边缘端的协作不断地发生变化。因此,有必要实现边缘服务和云服务之间的灵活划分。提出一种面向服务的云端与边缘端的无缝集成方法,用于实现大规模流数据云计算和边缘计算的协作。该方法将云服务分成两部分,分别在云端和边缘端上运行。同时,提出了一种基于改进的二分图动态服务调度机制。当产生事件时,可以在适当的时间将云服务部署到边缘节点。基于真实的电能质量监控数据对提出的方法进行了有效性验证。

关键词: 边缘计算, 云计算, 无缝集成, 主动式数据服务, 动态调度

Abstract:

Edge computing can improve the processing quality of big IoT stream data and reduce network operating cost by moving computation onto edge devices. However, there are two challenges in integrating cloud and edge computing for big stream data. Firstly, edge devices usually have very limited computing and storage capabilities, and apparently cannot support real-time processing of big stream data. Secondly, the unpredictability of stream data leads to constant changes in edge-side collaboration. Therefore, it is necessary to achieve a flexible division between edge services and cloud services. We propose a servicebased approach to seamlessly integrating cloud and edge devices to realize the collaboration of large-scale stream data cloud computing and edge computing. This approach divides the cloud service into two parts running on cloud and edge respectively. At the same time, we propose a dynamic service scheduling mechanism based on the improved bipartite graphs. During event generation, we can deploy cloud service on the edge node at appropriate time. The effectiveness of the proposed approach is demonstrated by examining real cases of China's State Power Grid. Experimental results verify the effectiveness and efficiency of our approach.

Key words: edge computing, cloud computing, seamless integration, proactive data service, dynamic scheduling