摘要:
客观上,用户的评价准则是由主观意识决定的,用户之间的评价准则不同导致多个用户对同一服务的评分不具备可比较性,不考虑不同用户评分的不可比较性所获得的服务推荐将难以满足用户个性偏好及其真实需求。为此,提出一种面向不一致用户评价准则的在线服务推荐方法,考虑用户偏好不一致时用户对在线服务的偏好关系,以偏好关系计算用户之间的相似度,并以此获得在线服务推荐结果。首先以用户服务评分矩阵为基础建立用户对服务的偏好关系,其次根据偏好关系计算用户之间的相似度,然后以用户相似度为基础对用户未评分的服务进行评分预测,最后以预测评分的排序结果作为推荐结果。与经典的协同过滤推荐方法的比较实验,验证了本方法的有效性。实验表明,本方法获得的推荐结果能满足大多数用户的服务偏好,同时获得了比经典的协同过滤推荐方法更好的准确率。
张国涛1,付晓东1,2,岳昆3,刘骊1,冯勇1,刘利军1. null[J]. 计算机工程与科学.
ZHANG Guotao1,FU Xiaodong1,2,YUE Kun3,LIU Li1,FENG Yong1,LIU Lijun1.
Online service recommendation for
inconsistent user evaluation criteria
[J]. Computer Engineering & Science.