摘要:
关联分类及较多的改进算法很难同时既具有较高的整体准确率又有较好的小类分类性能。针对此问题,提出了一种基于类支持度阈值独立挖掘的关联分类改进算法—ACCS。ACCS算法的主要特点是:(1)根据训练集中各类数量大小给出每个类类支持度阈值的设定方法,并基于各类的类支持度阈值独立挖掘该类的关联分类规则,尽量使小类生成更多高置信度的规则;(2) 采用类支持度对置信度相同的规则排序,提高小类规则的优先级;(3)用综合考虑置信度和提升度的新的规则度量预测未知实例。在多个数据集上的实验结果表明,相比多种关联分类改进算法,ACCS算法有更高的整体分类准确率,且在不平衡数据上也能取得较好的小类分类性能。
周忠眉1,2,李家辉1,2. 基于各类支持度阈值独立挖掘的关联改进算法[J]. 计算机工程与科学.
ZHOU Zhong-mei1,2,LI Jia-hui1,2.
An associative classification algorithm based on various
class-support thresholds and independent mining rules
[J]. Computer Engineering & Science.