• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于CNN-SVM的护理不良事件文本分类研究

葛晓伟,李凯霞,程铭   

  1. (郑州大学第一附属医院,河南 郑州 450052)
  • 收稿日期:2019-06-14 修回日期:2019-08-17 出版日期:2020-01-25 发布日期:2020-01-25
  • 基金资助:

    国家自然科学青年基金(61802350,81701687)

Text classification of nursing
adverse events based on CNN-SVM

GE Xiao-wei,LI Kai-xia,CHENG Ming   

  1. (The First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China)
     
  • Received:2019-06-14 Revised:2019-08-17 Online:2020-01-25 Published:2020-01-25

摘要:

针对当前医院护理不良事件上报的内容多为非结构化文本数据,缺乏合理明确的分类,人工分析难度大、人为因素多、存在漏报瞒报、人为降低事件级别等问题,提出一种基于字符卷积神经网络CNN与支持向量机SVM的中文护理不良事件文本分类模型。该模型通过构建字符级文本词汇表对文本进行向量化,利用CNN对文本进行抽象的特征提取,并用SVM分类器实现中文文本分类。与传统基于TF-IDF的SVM、随机森林等多组分类模型进行对比实验,来验证该模型在中文护理不良事件文本分类中的分类效果。

关键词: 中文文本分类, 护理不良事件, CNN-SVM

Abstract:

The reported contents about the current nursing adverse events are mostly unstructured text data and lack of reasonable and clear classification, so there are many problems such as difficult manual analysis, many human factors, omitted and concealed events, and artificially reduced event levels. This paper proposes a text classification model of Chinese nursing adverse events based on Convolutional Neural Network (CNN) and Support Vector Machine (SVM). A character-level text vocabulary is constructed to vectorize the text, CNN is used to extract the abstract features of the text, and SVM classifier is used to realize the Chinese text classification. Comparative experiments show that the proposed model has better classification effect than the traditional classification models such as SVM and random forest based on TF-IDF (Term Frequency-Inverse Document Frequency) in the text classification of Chinese nursing adverse events.
 

Key words: Chinese text classification, nursing adverse event, CNN-SVM