摘要:
高效检索是数字图书馆的核心业务之一,其中排序是高效信息检索的核心问题。给定一系列的书目列表,利用排序模型生成目标书目的排序列表。将学习排序算法应用于信息检索领域时,常用方法是通过最小化pairwise损失函数值来优化排序模型。然而,已有结论表明,pairwise损失值最小化不一定能得到listwise算法的最佳排序性能。并且将在线学习排序算法与listwise算法相结合也非常困难。提出了一种基于listwise的在线学习排序算法,旨在保证listwise算法性能优势的前提下,实现在线学习排序算法,从而降低检索复杂度。首先解决将在线学习排序算法与listwise算法相结合的问题;然后通过最小化基于预测列表和真实列表定义的损失函数来优化排序模型;最后提出基于online-listwise算法的自适应学习率。实验结果表明,所提出算法具有较好的检索性能和检索速度。
李茜, 周华健, 杨浩运, 殷海兵. 一种基于listwise的在线学习书目排序检索算法[J]. 计算机工程与科学.
LI Qian, ZHOU Hua-jian, YANG Hao-yun, YIN Hai-bing.
An online learning sorting algorithm
based on listwise for book list retrieval
[J]. Computer Engineering & Science.