• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (07): 1158-1167.

• 高性能计算 • 上一篇    下一篇

带时间约束的Louvain算法在动态脑功能网络模块化中的应用研究#br#

淡杨超, 王彬, 薛洁, 盛景业, 刘畅, 詹威威,    

  1. (1.昆明理工大学信息工程与自动化学院,云南 昆明 650500;2.昆明理工大学云南省人工智能重点实验室,云南 昆明 650500;
    3.云南省公安厅禁毒局,云南昆明 650228;
    4.提升政府治理能力大数据应用技术国家工程实验室,贵州 贵阳 550022;
    5.中电科大数据研究院有限公司总体技术研究中心,贵州 贵阳 550022)
  • 出版日期:2020-07-25 发布日期:2020-07-25

Application of time-constrained Louvain algorithm in modularization of dynamic brain function network

DAN Yang-chao, WANG Bin, XUE Jie, SHENG Jing-ye, LIU Chang, ZHANG Wei-wei   

  1. (1.Faculty of Information Engineering & Automation,Kunming University of Science and  Technology,Kunming 650500;
    2.Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650500;
    3.Narcotics Control Administration of Yunnan Provincial Public Security Department,Kunming  650228;
    4.National Engineering Laboratory for Improving the Government’s 
    Governance Capability Big Data Application Technology,Guiyang 550022;
    5.General Technology Research Center of CETC Big Data Research Institute Co.,Ltd.,Guiyang 550022,China)

  • Online:2020-07-25 Published:2020-07-25

摘要: 针对在动态脑功能网络的模块化属性研究中,Louvain算法因过度追求模块度值最大化而导致的动态脑功能网络模块辨识度不高的问题,提出了一种带时间约束的Louvain算法。该算法以整个数据采集区间上的模块度值分布为依据构建迭代结束条件,以时间约束来达到模块在规模和数量上的均衡,从而保证模块划分更加合理。将本文算法用于静息态脑功能的模块划分实验时,对比结果显示,与原Louvain算法相比,带时间约束的Louvain算法能够得到更为合理的模块化结果,并可以观测到动态脑功能网络中小规模的模块结构。而采用本文算法用于健康人和自闭症患者的动态脑功能网络模块度对比实验,能够揭示两者在模块化上存在显著差别,从而验证了本文算法的有效性。


关键词: 动态功能连接, 模块化, 时间约束条件, Louvain算法, 静息态fMRI

Abstract: In the study of modularization attributes of dynamic brain function network, Louvain algorithm maximizes the modularity value, which leads to low recognition of dynamic brain function network modules. For solving this problem, a time-constrained Louvain algorithm is proposed. In this algorithm, the iterative end condition for time constraint model is constructed based on the distribution of modularity values on the entire data acquisition time period. With this time constraint condition, the ba- lance of both scale and quantity of modules can be achieved, which will be helpful to ensure the reasonability of modules. When this method is used in the module partitioning experiment of resting-state brain function network, the experiment results show that, compared with Louvain algorithm, the time- constrained Louvain algorithm can provide a more reasonable modularity recognition result. Furthermore, the dynamic brain function network modularity comparison experiments with this method between healthy people and autistic patients are carried out, and the results prove that there are significant differences in the modularization features between these two groups, which can verify the effectiveness of this method. 


Key words: dynamic functional connection, modularization, time-constrained condition, Louvain algorithm, resting state fMRI

中图分类号: