• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (03): 486-493.

• 图形与图像 • 上一篇    下一篇

基于多特征融合与极限学习机的植物叶片分类方法

火元莲,李俞利   

  1. (西北师范大学物理与电子工程学院,甘肃 兰州 730070)

  • 收稿日期:2020-04-17 修回日期:2020-05-22 接受日期:2021-03-25 出版日期:2021-03-25 发布日期:2021-03-26
  • 基金资助:
    国家自然科学基金(61561044)

A plant leaf classification method based on multi feature fusion and extreme learning machine

HUO Yuan-lian,LI Yu-li   

  1. (College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China)

  • Received:2020-04-17 Revised:2020-05-22 Accepted:2021-03-25 Online:2021-03-25 Published:2021-03-26

摘要: 对植物的分类多通过对植物叶片的分类来实现,为提高植物叶片分类的准确率提出了一种基于多特征融合与极限学习机的植物叶片分类方法。首先对植物叶片彩色图像进行预处理,得到去除叶片颜色与背景的二值图像和灰度图像;然后从二值图像中提取植物叶片的形状特征和不变矩特征,利用灰度图像提取灰度共生矩阵参数作为叶片图像的纹理特征,共得到28维的特征向量,最后采用极限学习机分类策略对特征向量进行训练和测试。在公开的植物叶片数据集Flavia上进行实验,训练分类准确率达到99%以上,测试准确率达到98%以上。实验结果表明,本文方法可以有效提高植物叶片分类的准确率。


关键词: 植物叶片分类, 多特征融合, 极限学习机

Abstract: The classification of plants is mostly realized through the classification of plant leaves. In order to improve the accuracy of plant leaf classification, a plant leaf classification method based on multi feature fusion and extreme learning machine is proposed. Firstly, the color image of plant leaves is preprocessed to get the binary image and gray image in order to remove the color and background of leaves. Secondly, the shape feature and invariant moment feature of plant leaves are extracted from the binary image, and the gray level co-occurrence matrix parameter is extracted from the gray level image as the texture feature of leaves, so a total of 28 dimensional feature vectors are obtained. Finally, the classification strategy of the extreme learning machine is used to train and test the eigenvectors. Experiments on the open plant leaf dataset Flavia show that the accuracy of training classification is more than 99%, and the test accuracy is more than 98%. Experimental results show that this method can effectively improve the accuracy of plant leaf classification.



Key words: plant leaf classification, multi-feature fusion, extreme learning machine