计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (04): 729-737.
赵应丁1,岳星宇2,杨文姬1,4,张吉昊3,杨红云1,4
ZHAO Ying-ding1,YUE Xing-yu2,YANG Wen-ji1,4,ZHANG Ji-hao3,YANG Hong-yun1,4#br#
摘要: 随着深度学习技术的发展以及卷积神经网络在众多计算机视觉任务中的突出表现,基于卷积神经网络的深度显著性检测方法成为显著性检测领域的主流方法。但是,卷积神经网络受卷积核尺寸的限制,在网络底层只能在较小范围内提取特征,不能很好地检测区域内不显著但全局显著的对象;其次,卷积神经网络通过堆叠卷积层的方式可获得图像的全局信息,但在信息由浅向深传递时,会导致信息遗失,同时堆叠太深也会导致网络难以优化。基于此,提出一种基于多特征融合卷积神经网络的显著性检测方法。使用多个局部特征增强模块和全局上下文建模模块对卷积神经网络进行增强,利用局部特征增强模块增大特征提取范围的同时,采用全局上下文建模获得特征图的全局信息,有效地抑制了区域内显著而全局不显著的物体对显著性检测的干扰;
能够同时提取多尺度局部特征和全局特征进行显著性检测,有效地提升了检测结果的准确性。最后,通过实验对所提方法的有效性进行验证并和其它11种显著性检测方法进行对比,结果表明所提方法能提升显著性检测结果的准确性且优于参与比较的11种方法。