• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (05): 862-871.

• 图形与图像 • 上一篇    下一篇

基于集成分类型深度神经网络的视网膜眼底血管图像分割

蒋芸,王发林,张海   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)

  • 收稿日期:2020-02-18 修回日期:2020-05-19 接受日期:2021-05-25 出版日期:2021-05-25 发布日期:2021-05-19
  • 基金资助:
    国家自然科学基金(61962054,61163036);2016年甘肃省科技计划资助自然科学基金(1606RJZA047)

Image segmentation of retinal fundus vessels based on ensembled classified deep neural network

JIANG Yun,WANG Fa-lin,ZHANG Hai   

  1. (College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2020-02-18 Revised:2020-05-19 Accepted:2021-05-25 Online:2021-05-25 Published:2021-05-19
  • Supported by:

摘要: 视网膜血管检测在眼底疾病的诊断和治疗中具有重要的临床价值。但是,由于眼底图像特征的复杂性和多样性,大部分的视网膜分割方法存在血管分割性能低、抗噪声干扰能力弱和对病灶敏感等问题,为此,提出了一种集成深度分类神经网络对像素点分类的方法。首先利用不同的残差网络模型来分类像素点,获得血管分割图像;然后通过集成学习的方法对各个模型的分割结果进行处理,获得最终的视网膜血管分割图像。在STARE、DRIVE和CHASE数据集上的实验仿真结果显示,分割准确率分别达到9736%,9557%,9636%,特异性分别达到9806%,9776%,9784%,F-measure分别达到8498%,8225%,7987%。比R2U_Net的F-measure分别提高了023%,0.54%,0.59%。


关键词: Retinal blood vessel detection has important clinical value in the diagnosis and treatment of fundus diseases. However, due to the complexity and diversity of fundus image features, most retinal segmentation methods have some problems such as low performance of blood vessel segmentation, weak anti-noise interference, and sensitivity to lesions. Therefore, a , pixel points classification method based on ensembled classified deep neural network is proposed. Firstly, different residual network models are used to classify pixel points and get the vascular segmentation image. Secondly, through the ensemble learning method, the segmentation results of each model are processed to obtain the final retinal vascular segmentation image. The simulation results on STARE, DRIVE, and CHASE datasets show that the segmentation accuracy is 97.36%, 95.57%, 96.36%, the specificity is 98.06%, 97.76%, 97.84%, and the F-measure , is 84.98%, 82.25%, 79.87%. The F-measure , is 0.23%, 0.54%, and 0.59% higher than R2U_Net.

Abstract: 深度学习;卷积神经网络;图像分割;集成学习

Key words: