• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (05): 936-943.

• 人工智能与数据挖掘 • 上一篇    下一篇

广义二型模糊逻辑系统降型及其采样离散Nie-Tan算法

陈阳,王涛   

  1. (辽宁工业大学理学院,辽宁 锦州 121001)

  • 收稿日期:2020-06-09 修回日期:2020-07-29 接受日期:2021-05-25 出版日期:2021-05-25 发布日期:2021-05-19
  • 基金资助:
    国家自然科学基金(61973146);辽宁省自然科学基金指导项目(20180550056);辽宁工业大学校人才基金(xr2020002)

Type-reduction of general type-2 fuzzy logic systems and sampling-based discrete Nie-Tan algorithms

CHEN Yang,WANG Tao   

  1. (College of Science,Liaoning University of Technology,Jinzhou 121001,China)

  • Received:2020-06-09 Revised:2020-07-29 Accepted:2021-05-25 Online:2021-05-25 Published:2021-05-19

摘要: 广义二型模糊逻辑系统在近年来成为学术研究的热点问题,而降型是该系统中的核心模块。最近的研究证明了连续Nie-Tan(CNT)算法是计算区间二型模糊集质心的准确方法。发现了离散Nie-Tan(NT)算法中的求和运算和CNT算法中的求积分运算的内在联系,用2类算法完成基于广义二型模糊集α-平面表达理论的广义二型模糊逻辑系统质心降型。3个计算机仿真实验表明,当适当增加主变量采样点个数时,所提出的基于主变量采样的离散NT算法计算出的广义二型模糊逻辑系统质心降型集和解模糊化值结果可以精确地逼近基准的CNT算法,且采样离散NT算法的计算效率远远高于CNT算法的效率。

关键词: 广义二型模糊逻辑系统, 质心降型, 离散Nie-Tan算法, 采样, 计算精度

Abstract: The generalized type-2 fuzzy logic system has become a hot academic research issue in recent years, and the reduced type is the core module of the system. Recent studies have proved that the continuous Nie-Tan (CNT) algorithm is an accurate method to calculate the centroid of the interval type-2 fuzzy set. This paper discovers the internal connection between the summation operation in the discrete Nie-Tan (NT) algorithm and the integration operation in the CNT algorithm, and adopts two types of algorithms to perform the centroid type-reduction of generalized type-2 fuzzy logic systems  based on the alpha-planes representation theory of general type-2 fuzzy sets. Three computer simulation experiments prove that, when the number of sampling points of the main variable is appropriately increased, the centroid reduced set and defuzzified value of the generalized type-2 fuzzy logic system calculated by the proposed discrete NT algorithm based on the main variable sampling can be accurately close to the benchmark CNT algorithm, and the computational efficiency of the sampling discrete NT algorithm is much higher than that of the CNT algorithm.

Key words: general type-2 fuzzy logic systems, centroid type-reduction, discrete Nie-Tan algorithms, sampling, calculation accuracy ,