• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (06): 976-983.

• 高性能计算 • 上一篇    下一篇

基于TPU和FPGA的深度学习边缘计算平台的设计与实现

栾奕,刘昌华   

  1. (武汉轻工大学数学与计算机学院,湖北 武汉 430023)
  • 收稿日期:2020-06-13 修回日期:2020-09-17 接受日期:2021-06-25 出版日期:2021-06-25 发布日期:2021-06-22

A deep neural network edge computing platform based on TPU+FPGA 

LUAN Yi,LIU Chang-hua   

  1. (School of Mathematics & Computer Science,Wuhan Polytechnic University,Wuhan 430023,China)
  • Received:2020-06-13 Revised:2020-09-17 Accepted:2021-06-25 Online:2021-06-25 Published:2021-06-22

摘要: 针对深度神经网络为了追求准确度对计算资源造成的巨大消耗,与边缘计算平台所处的受限环境之间的矛盾,探究利用FPGA逻辑资源搭建神经网络张量处理器(TPU),通过配合ARM CPU实现全新的边缘计算架构,不仅实现对深度神经网络模型的加速计算以及准确度的提升,还对功耗进行明显优化。该架构下,压缩后的MobileNet-V1网络准确度可达78.1%,而功耗仅为3.4 W,与其他不同计算架构的深度学习边缘计算平台的对比结果表明,该系统在不降低准确度的条件下,对于小规模深度神经网络的加速计算有着明显优势。


关键词: FPGA, TPU, 深度学习, 边缘计算

Abstract: Aiming at the contradiction between the huge consumption of computing resources by deep neural network in pursuit of accuracy and the restricted environment of edge computing platforms, a new edge computing fabric is explored. The new fabric uses FPGA logic resources to construct the Neural Network Tensor Processing Units (TPUs), and collaborates with ARM CPU in the FPGA chip, which not only accelerates the computation of deep neural network model and improves the accuracy, but also optimizes the power consumption of the entire system significantly. Under this architecture, the accuracy of the compressed MobileNet-V1 is 78.1%, while the power consumption is only 3.4 W. Its comparison with other deep learning edge computing platforms with different computing fabrics shows that the system has obvious advantages for accelerating the computation of small-scale deep neural networks, without reducing the accuracy.


Key words: FPGA, tensor processing unit, deep learning, edge computing