• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (06): 1131-1140.

• 人工智能与数据挖掘 • 上一篇    

基于改进型柯西变异灰狼优化算法训练的多层感知器

王栎桥,张达敏,樊英,徐航,王依柔   

  1. (贵州大学大数据与信息工程学院,贵州 贵阳 550025)
  • 收稿日期:2020-02-24 修回日期:2020-04-03 接受日期:2021-06-25 出版日期:2021-06-25 发布日期:2021-06-23
  • 基金资助:
    贵州省科学技术基金(黔科合基础[2020]1Y254)

Multilayer perceptron training based on a Cauchy variant grey wolf optimizer algorithm

WANG Li-qiao, ZHANG Da-min, FAN Ying, XU Hang, WANG Yi-rou   

  1. (College of Big Data &  Information Engineering,Guizhou University,Guiyang 550025,China)

  • Received:2020-02-24 Revised:2020-04-03 Accepted:2021-06-25 Online:2021-06-25 Published:2021-06-23

摘要: 多层感知器MLP是处理分类问题的一种方法,可实现非线性高维度分类,并有很好的扩展能力。但是,在传统MLP的训练过程中,MLP分类结果的好坏与参数选择关系密切,而且传统算法的参数选择有很多缺陷。使用群智能算法替代传统多层感知器训练器是一种解决方案。灰狼优化算法GWO是其中一种兼顾高水平的探索和开发能力的算法。但是,GWO算法训练MLP时,依然存在开发和探索不平衡的问题,导致MLP分类准确率不理想。为了提升算法探索能力,将柯西变异算子引入灰狼优化算法,同时平衡开发能力,加入余弦收敛因子,提出一种改进的柯西变异灰狼优化算法IGWO。最后,将改进后的算法作为MLP的训练器,用于对3个不同复杂度分类问题进行分类实验,检验训练器在不同结构MLP下的性能表现。结果表明:相较于其他对比算法,IGWO训练MLP在分类准确率、陷入局部最优抗性、全局收敛速度和稳定性方面均具有较好的性能。


关键词: 灰狼优化算法, 柯西变异算子, 余弦收敛因子, 多层感知器, 分类问题

Abstract: Multilayer perceptron (MLP) are a method to deal with the classification problems, which can realize nonlinear high latitude classification and has good scalability. However, in the training process of traditional MLP, the quality of the classification results of MLP is closely related to the selection of parameters, and the parameters of traditional algorithms have many shortcomings. Using heuristic algorithm as its trainer is a scheme to overcome these shortcomings. Grey wolf optimizer (GWO) is a new meta-heuristic algorithm based on the predation behavior of grey wolf, which has been proved to be an algorithm with high level of exploration and development capability. In order to improve the exploration ability of the algorithm, the Cauchy variant is introduced into the grey wolf algorithm, and an improved Cauchy variant grey wolf optimizer (IGWO) is proposed. At the same time, the cosine convergence factor is added and the new update formula is used to ensure the robustness of the algorithm. Finally, the IGWO algorithm is used as the trainer of MLP to conduct the classification experiments on three different complexity classification problems and to test the performance of the trainer under diffe- rent structures. The results show that the proposed IGWO outperforms other algorithms in terms of classification accuracy, avoidance of falling into the local optimal, global convergence speed, and robustness.


Key words: grey wolf , optimizer algorithm;Cauchy variant operator;cosine convergence factor;multilayer perceptron;classification problem