• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1457-1466.

• 人工智能与数据挖掘 • 上一篇    下一篇

改进粒子群算法优化回声状态网络的电力需求预测研究

王林,王燕丽,安泽远   

  1. (华中科技大学管理学院,湖北 武汉 430074)
  • 收稿日期:2021-01-21 修回日期:2021-05-06 接受日期:2022-08-25 出版日期:2022-08-25 发布日期:2022-08-25
  • 基金资助:
    国家自然科学基金(71771095);中央高校基本科研业务费专项资金(HUST:2019kfyRCPY038)

Echo state networks with improved particle swarm optimization algorithm for electricity demand forecasting

WANG Lin,WANG Yan-li,AN Ze-yuan   

  1. (School of Management,Huazhong University of Science & Technology,Wuhan 430074,China)
  • Received:2021-01-21 Revised:2021-05-06 Accepted:2022-08-25 Online:2022-08-25 Published:2022-08-25

摘要: 首先引入自适应算子对标准粒子群优化算法PSO的惯性权重和学习因子进行改进,以提高其探索当前空间和开发未知空间之间的平衡性。同时,采用非线性函数来构建回声状态网络ESN储备池内部状态之间的非线性关系。接着利用改进的粒子群优化算法APSO对非线性回声状态网络NESN的关键参数进行优化,以构建APSO-NESN组合预测模型。最后运用该模型进行电力需求预测。实验结果表明,相比自回归移动平均模型、多元线性回归、标准ESN及其他预测模型,APSO-NESN模型具有更高的预测精度。

关键词: 电力需求预测, 回声状态神经网络, 粒子群优化算法

Abstract: Firstly, an adaptive operator is introduced to improve the inertial weights and learning factors of the standard particle swarm optimization algorithm (PSO) to improve the balance between the exploration of the current space and the unknown space. At the same time, a nonlinear function is used to construct the nonlinear relationship between the internal states of the Echo State Networks (ESN). Then the improved PSO (APSO) is used to optimize the key parameters of Nonlinear ESN (NESN) to propose an assembled prediction model named APSO-NESN. Finally, the model is used to solve electricity demand forecasting problems. The experimental results show that the APSO-NESN model has higher prediction accuracy than the ARIMA, MLR, standard ESN, and other models.


Key words: electricity consumption forecasting, echo state network (ESN), particle swarm optimization algorithm (PSO)