• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (09): 1676-1685.

• 图形与图像 • 上一篇    下一篇

基于U-Net改进的多尺度融合超声神经分割算法研究

张克双1,邬春学1,张生1,林晓2   

  1. (1.上海理工大学光电信息与计算机工程学院,上海 200093;2.上海师范大学信息与机电工程学院,上海 200030)

  • 收稿日期:2020-12-08 修回日期:2021-03-02 接受日期:2022-09-25 出版日期:2022-09-25 发布日期:2022-09-25
  • 基金资助:
    国家重点研发计划(2018YFC0810204,2018YFB17026);国家自然科学基金(61872242);上海市科技创新行动计划(19511105103);上海现代光学系统重点实验室项目

An ultrasonic neural segmentation algorithm based on U-Net improved multi-scale fusion

ZHANG Ke-shuang1,WU Chun-xue1,ZHANG Sheng1,LIN Xiao2   

  1. (1.School of Optical-Electrical and Computer Engineering,
    University of Shanghai for Science and Technology,Shanghai 200093;
    2.The College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200030,China)
  • Received:2020-12-08 Revised:2021-03-02 Accepted:2022-09-25 Online:2022-09-25 Published:2022-09-25

摘要: 大量传统的颈部超声神经检测算法,检测敏感性低,假阳性数量大,低层特征利用率不足。而颈部超声图像数量较少,边缘模糊且对噪声敏感。对此,提出一种改进型U-Net分支融合算法:改进损失函数,获得高质量的候选样本;使用多尺度卷积结构替换原结构中普通卷积层,增强特征提取能力;结合扩张卷积替换中、深层池化操作,提高低层特征利用率。通过对比实验验证了所提算法的算法性能。实验表明,与传统的U-Net和SegNet卷积网络对于小尺寸超声神经分割的结果相比,所提算法的分割效果较两者分别提升了近9%和17%,且对于正常尺寸和小尺寸的神经分割均有较高的分割精度。

关键词: 颈部超声图像神经检测, 多尺度, 加权损失函数, 卷积神经网络

Abstract: Traditional cervical ultrasound nerve detection algorithms have low detection sensitivity, a large number of false positives, and insufficient utilization of low-level features. However, the number of ultrasound images of the neck is small, and the edges are blurred and sensitive to noise. Therefore, an improved U-Net branch fusion algorithm is proposed. It improves the loss function to obtain high-quality candidate samples, replaces the ordinary convolutional layer in the original structure with a multi-scale convolution structure to enhance feature extraction, and combines expanded convolution to replace middle and deep pooling operations so as to improve the utilization of low-level features. The performance of the proposed algorithm is verified through comparative experiments. The experimental results show that, compared with the traditional U-Net and SegNet convolution networks, the proposal improves the small-size ultrasonic neural segmentation effect by nearly 9% and 17% respectively, and the segmentation accuracy is higher for normal-size and small-size neural segmentation. 

Key words: cervical ultrasound nerve detection, multiscale, weighted loss function, convolutional neural network