计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (10): 1844-1851.
尹德鑫,张达敏,蔡朋宸,秦维娜
YIN De-xin,ZHANG Da-min,CAI Peng-chen,QIN Wei-na
摘要: 麻雀搜索算法SSA在求解目标函数最优解时,存在种群多样性不丰富,易陷于局部最优,多维函数求解精度差等问题,针对这些问题提出改进的麻雀搜索算法ISSA。首先,利用反向学习策略初始化种群,增加种群多样性;然后,对步长因子进行动态调整,提高算法的求解精度;最后,在侦查预警的麻雀位置更新公式中引入Levy飞行,提高算法寻优能力和跳出局部极值的能力。将ISSA、SSA和其他算法在8个测试函数上进行求解,并进行秩和检验,仿真结果表明,ISSA具有更高的寻优性能。还将ISSA应用到认知无线电的频谱分配中,实验结果表明,ISSA的系统效益和公平性优于其他算法,验证了ISSA在实际应用中的可行性。