• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (10): 1877-1884.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于时域-频域哈希编码的电网图像检索方法

强梓林1,刘建国2,刘云峰2,卫栋2,强彦3   

  1. (1.太原理工大学矿业工程学院,山西 太原 030600;2.国网晋城供电公司,山西 晋城 048000;
    3.太原理工大学信息与计算机学院,山西 太原 030600)

  • 收稿日期:2020-10-10 修回日期:2021-03-25 接受日期:2022-10-25 出版日期:2022-10-25 发布日期:2022-10-28
  • 基金资助:
    山西省电力公司科技项目(5205E0160009)

A power grid image retrieval method based on time-frequency domain hash coding

QIANG Zi-lin1,LIU Jian-guo2,LIU Yun-feng2,WEI Dong2,QIANG Yan3   

  1. (1.College of Mining Engineering,Taiyuan University of Technology,Taiyuan 030600;
    2.State Grid Jincheng Power Supply Company,Jincheng 048000;
    3.College of Information and Computer,Taiyuan University of Technology,Taiyuan  030600,China)
  • Received:2020-10-10 Revised:2021-03-25 Accepted:2022-10-25 Online:2022-10-25 Published:2022-10-28

摘要: 电网数据信息的准确检索在保障电网系统正常运行方面起着非常重要的作用。快速准确地从电网图像数据库中查找到与目标图像相似度高的图像可以有效地提高电网工作人员的工作效率,降低设备维护成本。针对传统检索方法检索精度低的问题,提出了一种基于时域-频域的端到端哈希编码方法。最后,在2个数据集上将该方法与最新的8种方法进行了比较,实验结果表明该方法是有效的。该方法创新性地结合了频域信息,以提高预测正确率,且结合了多任务学习和距圆损失来更加清晰地约束哈希编码任务的训练过程,使图像检索结果更加准确。

关键词: 电网图像数据, 深度学习, 图像检索, 多任务学习, 哈希编码

Abstract: Accurate retrieval of power grid data information plays a very important role in ensuring the normal operation of the power grid system. It can effectively improve the work efficiency of power grid staff to quickly and accurately find images with high similarity to the target image from the power grid image database. Aiming at the low retrieval accuracy of traditional retrieval methods, an end-to-end hash coding method based on time-domain and frequency-domain is proposed. The experimental results on two datasets show the effectiveness of the proposed method. The model combines the frequency domain information innovatively to improve the prediction accuracy, and adds multi-task learning and distance circle loss to constrain the training process of hash coding task more clearly, which makes the image retrieval results more accurate.

Key words: power grid image data, deep learning, image retrieval, multi-task learning, hash coding ,