计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 2003-2009.
张睿萍1,宁芊1,2,雷印杰1,陈炳才3
ZHANG Rui-ping1,NING Qian1,2,LEI Yin-jie1,CHEN Bing-cai3
摘要: 近年来,人们对于垃圾的分类与回收越来越重视,但垃圾分类耗费了大量的人力和物力且分拣效率低下。针对基于矩形边界框的垃圾检测方法在多分类环境下效果不够理想等问题,提出了一种基于改进Mask R-CNN算法的生活垃圾检测模型。该模型摒弃了传统的ResNet,采用改进的ResNeXt101 作为主干网络进行特征提取,提高了目标检测的准确率和背景边界线分割的精确度。实验结果表明,与传统的Mask R-CNN算法相比,本文模型的mAP为91.1%,提升了2.35%;与当前流行的目标检测模型进行了对比,本文模型的分类准确率和分割精确度均表现优异,表明了所提模型在垃圾检测任务中的可行性与有效性。