• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 2064-2070.

• 人工智能与数据挖掘 • 上一篇    下一篇

一种基于SARIMA-LSTM模型的电网主机负载预测方法

王堃1,2,郑晨1,张立中2,陈志刚1   

  1. (1.中南大学计算机学院,湖南 长沙 410083;2.国网宁夏电力有限信息通信公司,宁夏 银川 753000)
  • 收稿日期:2021-03-03 修回日期:2021-08-30 接受日期:2022-11-25 出版日期:2022-11-25 发布日期:2022-11-25
  • 基金资助:
    国家自然科学基金(61672540);国家自然科学基金重点项目(71633006)

A load forecasting method for power grid host based on SARIMA-LSTM model

WANG Kun1,2,ZHENG Chen1,ZHANG Li-zhong2,CHEN Zhi-gang1   

  1. (1.School of Computer Science and Engineering,Central South University,Changsha 410083;
    2.State Grid Ningxia Electric Power Co.,Ltd.Information and Telecommunication Branch,Yinchuan 753000,China)
  • Received:2021-03-03 Revised:2021-08-30 Accepted:2022-11-25 Online:2022-11-25 Published:2022-11-25

摘要: 随着智能电网的不断发展,如何提高对信息设备运行状态的预测准确率以及设置适应数据变化的动态阈值区间是电网IT运维面临的巨大挑战。为了解决这些问题,提出了组合时间序列预测模型(SARIMA-LSTM),即在传统周期性ARIMA 模型(SARIMA)的基础上,引入深度学习领域的LSTM模型,并摒弃了过去精度低、效果差的误差拟合方法,使用误差自回归方法来补偿预测结果。该模型可以学习到传统ARIMA模型无法捕捉到的误差波动规律,解决其无法预测非线性数据的问题。实验结果表明,在实际预测电网内存负载数据时,与ARIMA模型和SAIRIMA模型相比,SARIMA-LSTM模型可以实现更高的预测精度。

关键词: 时间序列, 负载预测, 周期差分移动平均自回归模型, 误差补偿, 长短期记忆网络

Abstract: With the continuous development of smart grids, how to improve the prediction effect of the future operation status of information equipment and set the dynamic threshold interval to adapt to data changes are huge challenges for IT operation and maintenance of power grid. In order to solve these problems, this paper proposes a combined time series forecasting model (SARIMA-LSTM). On the basis of the traditional periodic ARIMA (SARIMA) model, the LSTM model in the field of deep learning is introduced, which discards the low accuracy and poor effect of the traditional error fitting method using error autoregressive method to compensate the prediction result. By using this model to do prediction, we can learn the error fluctuation law which cannot be captured by the traditional ARIMA model, and make up for its inability to predict nonlinear data. Finally, the experimental results show that, compared with the ARIMA model and the FAIRIMA model, the SARIMA-LSTM model can achieve higher prediction accuracy, when actually predicting the grid memory load data.

Key words: time series, load forecasting, seasonal auto regressive integrated moving average(SARIMA), error compensation, long short-term memory(LSTM)