计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (03): 520-527.
张若一1,金柳2,马慧芳1,3,王亦可1,李清风1
ZHANG Ruo-yi1,JIN Liu2,MA Hui-fang1,3,WANG Yi-ke1,LI Qing-feng1
摘要: 知识图谱(KG)具有丰富的结构化信息,能有效缓解推荐模型的稀疏性和冷启动问题,提升推荐系统的准确性与可解释性。近年来,融合知识图谱的端到端推荐模型成为技术趋势。提出了一种融合相似用户影响效应的知识图谱推荐模型,该模型在有效利用知识图谱的前提下,扩充了用户与项目之间的交互方式。首先,利用图神经网络邻域聚合策略与注意力机制,分别捕获用户与项目在知识图谱上的2种高阶表示;其次,根据相似用户的影响效应,设计影响力增强层,捕获相似用户影响效应的潜在表示;最后,将上述3种表示共同反馈到多层感知机中,输出预测分值。在真实数据集上的实验结果验证了所提模型的有效性和效率。