• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (04): 683-690.

• 图形与图像 • 上一篇    下一篇

基于多尺度联合网络的图像超分辨率重建方法

王万军,丁新涛,刘朝,章智强   

  1. (安徽师范大学计算机与信息学院,安徽 芜湖 241002)
  • 收稿日期:2021-05-18 修回日期:2021-11-24 接受日期:2023-04-25 出版日期:2023-04-25 发布日期:2023-04-13
  • 基金资助:
    安徽省自然科学基金(1808085MF171)

An image super-resolution reconstruction method based on multi-scale joint network

WANG Wan-jun,DING Xin-tao,LIU Chao,ZHANG Zhi-qiang   

  1. (School of Computer and Information,Anhui Normal University,Wuhu 241002,China)
  • Received:2021-05-18 Revised:2021-11-24 Accepted:2023-04-25 Online:2023-04-25 Published:2023-04-13

摘要: 图像超分辨率在视频修复等方面具有广泛应用。针对基于深度学习的图像超分辨率重建(FSRCNN)方法存在的问题,提出基于多尺度联合网络的图像超分辨率重建方法。首先,通过构建基于多尺度网络的特征采样模型来提取低分辨率(LR)图像的特征;其次,通过特征融合和构造亚像素卷积层的方法对特征进行增强;最后,定义基于均方误差MSE和峰值信噪比PSNR的联合损失函数。在Set5、Set14和BSD100数据集上进行了对比实验,实验结果表明,该方法获得了相对较好的结果。最后针对低分辨率影视作品《西游记》和《红楼梦》进行了高分辨率修复,取得了一定的效果。

关键词: 多尺度网络, 亚像素卷积;联合损失;超分辨率

Abstract: Super-resolution is a widely used technology in many applications, such as video repair. Aiming at the insufficiency of the Fast Super-Resolution Convolutional Neural Networks (FSRCNN) method, an image super-resolution reconstruction method based on multi-scale joint network is proposed. Firstly, based on multi-scale structures, a feature sampling model is proposed to extract the features of Low-Resolution (LR) image. Secondly, the features are enhanced by feature fusion and sub-pixel convolutional layer. Finally, a joint loss function involving Mean Square Error (MSE) loss and Peak Signal to Noise Ratio (PSNR) loss is proposed to improve the optimization of the networks training. Comparison experiments were carried out on the sets of Set5, Set14, and BSD100. The experimental results show that the method has superiority against the state-of-the-art methods. Finally, the proposed method is applied to increase the resolutions of the television dramas “Journey to the West” and “The Dream of Red Mansion”, which achieves good visual effect.

Key words: multi-scale network, subpixel convolution, joint loss, super-resolution