• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (04): 734-742.

• 人工智能与数据挖掘 • 上一篇    下一篇

改进特征金字塔的小目标深度学习模型

黄星威,陈曦,张塑凡   

  1. (长沙理工大学计算机与通信工程学院,湖南 长沙 410114)
  • 收稿日期:2021-05-24 修回日期:2021-10-14 接受日期:2023-04-25 出版日期:2023-04-25 发布日期:2023-04-13
  • 基金资助:
    湖南省教育厅科技研究项目(19C0028);长沙理工大学青年教师成长计划项目(2019QJCZ011)

A deep learning model based on improved feature pyramid networks for small object detection

HUANG Xing-wei,CHEN Xi,ZHANG Su-fan   

  1. (School of Computer &Communication Engineering,Changsha University of Science &Technology,Changsha 410114,China)
  • Received:2021-05-24 Revised:2021-10-14 Accepted:2023-04-25 Online:2023-04-25 Published:2023-04-13

摘要: 现有的目标检测模型常采用特征金子塔的多尺度特征融合来提升小目标检测性能。然而,在特征金字塔的浅层特征层,大目标的存在会削弱模型对小目标的检测,侧向连接会丢失高层特征层的语义信息。针对以上问题,提出了I-FPN特征金字塔。在浅层特征层,抹去大目标信息让模型更关注小目标;在高层特征层,使用残差特征增强模块减少信息损失。此外,模型还使用数据增广技术提升鲁棒性。I-FPN特征金字塔使用Resnet为主干网络,在VEDAI小目标数据集和PASCAL VOC通用目标数据集上进行了实验。实验结果表明,在不影响检测速度的条件下,在VEDAI测试集上较原特征金字塔的mAP指标提升了2.4%,在VOC测试集上mAP指标提升了0.5%。

关键词: 目标检测, 深度学习, 特征金字塔, 小目标

Abstract: Existing object detection models often use multi-scale feature fusion of feature pyramid to improve small object detection performance. However, in the shallow feature layer of the feature pyramid, the detection of small objects will be weakened due to the existence of large objects, and the semantic information of the upper feature layer will be lost due to lateral connection. To solve the above problems, an I-FPN feature pyramid is proposed. At the shallow feature layer, it erases the big object information and makes the model focus more on the small object. In the upper feature layer, the residual feature enhancement module is used to reduce the information loss. In addition, the model uses data augmentation techniques to improve the robustness. I-FPN feature pyramid was tested on VEDAI small target data set and PASCAL VOC universal target data set using Resnet master network. The experiment shows that, under the condition that the detection speed is not affected, the mAP index of VEDAI test set is increased by 2.4%, and that of VOC test set is increased by 0.5%.

Key words: object detection, deep learning, feature pyramid, small object