• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (05): 878-884.

• 图形与图像 • 上一篇    下一篇

密集交通场景中改进YOLOv3目标检测优化算法

霍爱清,张书涵,杨玉艳,胥静蓉,王泽文   

  1. (西安石油大学电子工程学院,陕西 西安 710065) 
  • 收稿日期:2021-10-25 修回日期:2022-01-24 接受日期:2023-05-25 出版日期:2023-05-25 发布日期:2023-05-16
  • 基金资助:
    陕西省教育厅重点实验室科研计划(17JS108);陕西省科技厅工业攻关项目(2020GY-152);西安石油大学研究生创新与实践能力培养项目(YCS21213196)

An improved YOLOv3 target detection optimization algorithm in dense traffic scenarios

HUO Ai-qing,ZHANG Shu-han,YANG Yu-yan,XU Jing-rong,WANG Ze-wen    

  1. (School of Electronic Engineering,Xi’an Shiyou University,Xi’an 710065,China)
  • Received:2021-10-25 Revised:2022-01-24 Accepted:2023-05-25 Online:2023-05-25 Published:2023-05-16

摘要: 针对交通拥堵的车辆密集场景中检测目标重叠率高而导致漏检和误检的问题,提出了改进YOLOv3、CIoU损失函数优化以及SD-NMS优化算法(简记L-YOLOv3+CIoU Loss+SD-NMS)。利用深度可分离卷积、SE 模块和Ghost 模块改进YOLOv3 的残差单元结构,以提高对密集目标的特征提取能力,减少网络模型参数量;采用完整交并比CIoU损失函数加快网络模型收敛速度,同时将多目标集合预测思想与 DIoU-NMS 有机结合,提出了 SD-NMS 优化算法,以降低漏检误检率。在BDD100K数据集上进行实验,结果表明,改进的目标检测算法召回率达到 91.58%,精准率达到93.04%,与 YOLOv3 算法相比,召回率和精准率分别提升了12.09%和9.52%,具有更好的检测效果。

关键词: 目标检测, 深度学习, YOLOv3算法, CIoU损失, 非极大值抑制

Abstract: Aiming at the problem of missed detection and false detection due to high overlap rate of detection targets in traffic congested scenes, a combination optimization algorithm (named L-YOLOv3+CIoU Loss+SD-NMS) containing improved YOLOv3, CIoU loss function optimization, and SD-NMS optimization is proposed. Deep separable convolution, SE module, and Ghost module are used to improve the residual unit structure of YOLOv3, in order to improve the ability of dense target feature extraction and reduce the amount of network model parameters. CIoU Loss is adopted to speed up the network  model convergence speed. Meanwhile, the multi-target set prediction idea is combined with DIoU-NMS to propose the SD-NMS optimization algorithm, in order to reduce the false detection rate of missed detection. Experimental results on the BDD100K data set show that the improved target detection algorithm has a recall rate of 91.58% and an accuracy rate of 93.04%. Compared with YOLOv3 algorithm, the proposal improves the recall rate and accuracy by 12.09% and 9.52%, respectively, showing better detection effect. 


Key words: target detection, deep learning, YOLOv3 algorithm, CIoU loss, non-maximum suppression