• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (07): 1159-1169.

• 高性能计算 • 上一篇    下一篇

符号化量子计算模拟器SymQC

付祥1,黎梓浩2,黄子潇2,杨曜嘉2,刘定东2,张春晖2,李小芳2   

  1. (1.国防科技大学计算机学院量子信息研究所兼高性能计算国家重点实验室,湖南 长沙 410073;
    2.国防科技大学计算机学院,湖南 长沙 410073)

  • 收稿日期:2022-11-01 修回日期:2023-02-25 接受日期:2023-07-25 出版日期:2023-07-25 发布日期:2023-07-11
  • 基金资助:
    国家自然科学基金(61902410);高性能计算国家重点实验室自主课题(202001-01);国防科技大学科研计划(ZK19-04)

SymQC:A symbolic quantum computing simulator

FU Xiang1,LI Zi-hao2,HUANG Zi-xiao2,YANG Yao-jia2,LIU Ding-dong2,ZHANG Chun-hui2,LI Xiao-fang2   

  1. (1.Institute for Quantum Information & State Key Laboratory of High Performance Computing,
    College of Computer Science and Technology,National University of Defense Technology,Changsha 410073;
    2.College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Received:2022-11-01 Revised:2023-02-25 Accepted:2023-07-25 Online:2023-07-25 Published:2023-07-11

摘要: 目前主流的量子计算模拟器一般基于数值计算,存在精度损失、量子态的展示不直观、难以支持参数化量子线路等问题。虽然已有人提出符号化量子计算模拟器,但它们在描述参数化量子态、构建自定义量子门和与量子编程环境进行系统集成等方面受到较大的限制。针对此问题,提出了一个新的符号化量子计算模拟器SymQC。SymQC可使用全振幅向量或狄拉克符号表示量子状态,计算符号参数化的量子线路的等效矩阵并模拟量子状态在量子线路下的演化过程,然后以不同的形式输出量子算法的执行结果。描述了SymQC的软件结构,并给出了一种常用量子状态更新算法的数学证明。通过运行以变分量子本征值求解算法(VQE)为代表的算法实例验证了SymQC的能力。

关键词: 量子计算, 模拟器, 符号计算, 量子态更新算法

Abstract: Currently, mainstream quantum computing simulators are generally based on numerical calculations, which suffer from precision loss, lack of intuitive representation of quantum states, and difficulty in supporting parameterized quantum circuits. Although symbolic quantum computing simulators have been proposed, they are limited in describing parameterized quantum states, constructing custom quantum gates, and integrating with quantum programming environments. To address this issue, this paper proposes a symbolic quantum computing simulator, SymQC. SymQC can use either full amplitude vectors or Dirac symbols to represent quantum states, calculate the equivalent matrix of symbolically parameterized quantum circuits, simulate the evolution of quantum states under quantum circuits, and output the execution results of quantum algorithms in different forms. This paper describes the software structure of SymQC and provides a mathematical proof of a commonly used quantum state update algorithm. Algorithm instances including variational quantum eigensolver (VQE) algorithm are used to verify the ability of SymQC.

Key words: quantum computing, simulator, symbolic calculation, quantum state update algorithm