计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (07): 1188-1196.
刘阳1,2,粟航2,何倩2,申普1,2,刘鹏2
LIU Yang1,2,SU Hang2,HE Qian2,SHEN Pu1,2,LIU Peng2
摘要: 针对机电设备故障数据整体趋势和多阈值点实际应用,提出了一种基于云-边协同的变分自编码门控循环神经网络VAE-GRU的设备故障检测方法。构建了基于云-边协同的机电设备故障检测系统架构,终端设备层、边缘节点层、云中心层,云中心和边缘节点之间通过协同的方式对机电设备进行故障检测。设计了VAE-GRU模型,通过VAE编码器对输入数据进行采样,利用GRU捕捉时序数据的长期相关性。设计了动态阈值选择算法确定故障检测阈值,针对不同数据集可自动选择最优阈值,提高故障检测精度。实验结果表明,提出的基于云-边协同VAE-GRU设备故障检测方法提高了设备故障检测准确性,降低了处理时延,能保证机电设备稳定运行。