• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1731-1753.

• 高性能计算 • 上一篇    下一篇

基于深度学习的短临降水预报综述

马志峰1,张浩1,刘劼2   

  1. (1.哈尔滨工业大学计算机科学与技术学院,黑龙江 哈尔滨150001;
    2.哈尔滨工业大学(深圳)国际人工智能研究院,广东 深圳 518055)
  • 收稿日期:2022-09-02 修回日期:2022-11-25 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    国家重点研发计划(2021ZD0110900);国家自然科学基金(62106061,61972114);中央高校基本科研业务费专项资金(FRFCU5710010521);黑龙江省科技发展专项(2021ZXJ05A03);黑龙江省自然科学基金(YQ2019F007)

A survey of precipitation nowcasting based on deep learning

MA Zhi-feng1,ZHANG Hao1,LIU Jie2   

  1. (1.School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001;
    2.International Institute for Artificial Intelligence,Harbin Institute of Technology,Shenzhen 518055,China)
  • Received:2022-09-02 Revised:2022-11-25 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 短临降水预报是指短期内降水的高分辨率预测,是一项重要但又困难的任务。在深度学习的背景下,它被视为一个基于雷达回波图的时空序列预测问题。降水预测是一个复杂的自我监督任务,由于运动总是在空间和时间维度上发生显著的变化,普通模型难以应对复杂的非线性时空转换,导致预测模糊。因此,如何进一步提高模型预测性能减少模糊是该领域研究的重点。目前关于短临降水预报的研究仍处于早期阶段,并且对已有的研究工作缺乏系统性的分类和讨论。因此,有必要对该领域进行全面调研。从不同维度全面总结和分析了短临降水预报领域的相关知识,并给出了未来的研究方向,具体内容如下:(1)阐明了短临降水预报的重要意义以及传统预测模型的优缺点;(2)给出了短临降水预报问题的数学定义;(3)全面总结和分析了常见的预测模型;(4)介绍了不同国家和地区的多个开源雷达数据集;(5)简单介绍了用于预测质量评估的度量指标;(6)讨论了不同模型中所使用的不同的损失函数;(7)指明了未来短临降水预报领域的研究方向。

关键词: 短临降水预报, 时空序列预测, 天气预报, 人工智能, 深度学习

Abstract: Precipitation nowcasting refers to the high-resolution prediction of precipitation in the short term, which is an important but difficult task. In the context of deep learning, it is viewed as a radar echo map-based spatiotemporal sequence prediction problem. Precipitation prediction is a complex self-supervised task. Since the motion always changes significantly in both spatial and temporal dimensions, it is difficult for ordinary models to cope with complex nonlinear spatiotemporal transformations, resulting in blurred predictions. Therefore, how to further improve the model prediction performance and reduce ambiguity is a key focus of research in this field. Currently, the research on precipitation nowcasting is still in the early stage, and there is a lack of systematic classification and discussion about the existing research work. Therefore, it is necessary to conduct a comprehensive investigation in this field. This paper comprehensively summarizes and analyzes the relevant knowledge in the field of precipitation nowcasting from different dimensions, and gives future research directions. The specific contents are as follows: (1) The significance of precipitation nowcasting, and the advantages and disadvantages of traditional forecasting models are clarified. (2) The mathematical definition of the nowcasting problem is given. (3) Common predictive models are comprehensively summarized, analyzed. (4) Several open source radar datasets in different countries and regions are introduced, and download links are given. (5) The metrics used for prediction quality assessment are briefly introduced. (6) The different loss functions used in different models is discussed. (7) The research direction of precipitation nowcasting in the future is pointed out.

Key words: precipitation nowcasting, spatiotemporal sequence prediction, weather forecast, artificial intelligence, deep learning