• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (11): 2078-2090.

• 人工智能与数据挖掘 • 上一篇    

差分变异和领地搜索的平衡优化算法及其机器人路径规划

张贝1,闵华松1,张新明2   

  1. (1.武汉科技大学机器人与智能系统研究院,湖北 武汉 430081;2.河南师范大学计算机与信息工程学院,河南 新乡 453007)
  • 收稿日期:2022-06-13 修回日期:2022-10-10 接受日期:2023-11-25 出版日期:2023-11-25 发布日期:2023-11-16

A differential mutation and territorial search equilibrium optimizer and its application in robot path planning

ZHANG Bei1,MIN Hua-song1,ZHANG Xin-ming2   

  1. (1.Institute of Robotics and Intelligent System,Wuhan University of Science and Technology,Wuhan 430081;
    2.College of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,China)
  • Received:2022-06-13 Revised:2022-10-10 Accepted:2023-11-25 Online:2023-11-25 Published:2023-11-16

摘要: 平衡优化EO算法是最近提出的一种优秀元启发式算法,但在解决复杂优化问题时存在搜索能力不足、可操作性差和搜索效率低等问题。因此,提出了一种改进的EO,即差分变异和领地搜索的EO——DTEO。首先,提出一种融合领地搜索的差分扰动策略用于最优粒子的浓度更新。然后,提出了一种精英与最差粒子差分变异策略来强化最差个体。最后,提出一种信息共享的差分变异策略和简化EO中的新解产生方式,并将二者动态融合用于其它粒子浓度的更新,以提高算法的可操作性和搜索能力,并缩短运行时间。CEC2014复杂函数测试集上的优化实验结果表明,与EO及其他优秀算法相比,DTEO搜索能力更强、效率更高和可操作性更强。DTEO应用机器人路径规划的实验结果也表明,DTEO具有更强的竞争性。

关键词: 优化方法, 元启发式算法, 平衡优化算法, 差分变异, 机器人路径规划

Abstract: Equilibrium Optimizer (EO) is a recently proposed excellent metaheuristic algorithm, but it encounters issues such as insufficient search ability, poor operability, and low search efficiency when solving complex optimization problems. Therefore, this paper proposes an improved EO, namely Differential mutation and Territorial search EO (DTEO). Firstly, a differential mutation method with territorial search is proposed to update the concentration of the best particle. Then, an elite-worst individual particle differential mutation strategy is proposed to strengthen the worst individual. Finally, a differential mutation strategy with information sharing and a simplified concentration updating way in EO are proposed and integrated dynamically to update the other particles' centralizations to improve the operability and search ability of the algorithm and reduce the running time. The experimental results on the complex functions from CEC2014 test set demonstrate that compared with EO and other excellent algorithms, DTEO has stronger search ability, higher efficiency, and stronger operability. Experimental results on robot path planning also show DTEO is more competitive. 

Key words: optimization method, meta-heuristic algorithm, equilibrium optimizer, differential mutation, robot path planning