计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (01): 179-190.
• 人工智能与数据挖掘 • 上一篇
赵文辉1,吴晓鸰1,凌捷1,HOON Heo2
ZHAO Wen-hui1,WU Xiao-ling1,LING Jie1,HOON Heo2
摘要: 不同领域的情感文本表达方式不一样,通常需要为各个领域训练相应的情感分析模型。针对无法用一个模型进行高效多领域情感分析的问题,提出了基于提示微调(prompt tuning)的多领域文本情感分析方法MSAPT。借助hard prompt,指示情感文本的所属领域和待选的情感标签,调动不同领域情感分析相关的知识,再为情感分析预训练一个统一的 “通才模型”,在下游的各领域文本学习中,保持模型冻结,通过prompt tuning使模型学习到下游各领域情感文本的特征。MSAPT仅需保存一个模型和一些参数量远远小于模型的prompt,实现了多领域情感分析。在多个属于不同领域的情感文本数据集上进行实验,结果表明仅进行prompt tuning时,MSAPT效果优于模型微调(model tuning)的。最后,分别对适应特定领域的prompt tuning、hard prompt、soft prompt的长度和中间训练数据集的大小进行消融实验,从证明其对情感分析效果的影响。